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ABSTRACT
In second price auctions with symmetric bidders, we find
that improved targeting via enhanced information disclosure
decreases revenue when there are two bidders and increases
revenue if there are at least four bidders. With asymme-
tries, improved targeting increases revenue if the most fre-
quent winner wins less than 30.4% of the time, but can de-
crease revenue otherwise. We derive analogous results for
position auctions. Finally, we show that revenue can vary
non-monotonically with the number of bidders who are able
to take advantage of improved targeting.
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1. INTRODUCTION
There has been substantial concern in the Internet ad-

vertising business over whether improvements in targeting
technology will reduce revenue from online advertising. The
intuition underlying these concerns runs as follows. Im-
provements in targeting enable advertisers to more accu-
rately identify the interests of consumers. If a consumer’s
interests are so accurately identified that advertisers know
there is only one product this consumer would ever buy,
wouldn’t this process result in only a single advertiser who
is willing to advertise to this consumer, meaning this adver-
tiser can bid without competition? A more nuanced version
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of this argument relies on a quantity effect. Since advertis-
ers will no longer purchase ads that reach consumers who
will not be interested in their products, the total demand
for advertisements will go down. If the supply of advertis-
ing opportunities remains unchanged, revenue from selling
ads will decline.

The question of whether enhanced targeting increases rev-
enue is important because of two powerful trends. First,
media consumption is moving online, and print newspapers
and radio have waned. The survival of much of the existing
media appears to depend on the ability to monetize online
content with advertising. Second, Internet advertising is in-
creasingly using sophisticated targeting through extensive
online databases on customers. Thus the likely survival of
existing publishers turns on whether enhanced targeting will
increase advertising revenue. Furthermore, since advertising
exchanges typically take a constant fraction of a publisher’s
revenue, there is a direct correspondence between whether
revenue increases for intermediaries and for publishers.

The argument that improvements in targeting will result
in only a single relevant advertiser for each consumer is likely
misplaced. The argument assumes that the purchase of the
customer is a foregone conclusion, which ignores one of the
main purposes of advertising: to influence the consumer’s
choice. While there is some advertising that is informational
in nature—alerting consumers to the existence of a product
and its features—the majority of advertising is intended to
sway the consumer’s perception of the product. This kind of
advertising is commonly called emotional branding, and it
is the most common kind by revenue. Coca-Cola advertises
extensively to people already aware of its products. Simi-
larly, how many American television watchers are unaware
of Proctor and Gamble’s Tide?

But the fact that the demand for advertisements to an
individual consumer will not decline to one as a result of
improved targeting does not invalidate the argument that
targeting might reduce revenue. Enhanced targeting will
typically increase advertiser welfare, by making advertising
more effective, while reducing competition through special-
ization.1 The effect of improving targeting in online adver-
tising is exactly the reverse of pure bundling for a monopo-
list, where the monopolist requires consumers to purchase a
bundle of objects or none at all. Targeting permits advertis-
ers to distinguish unlike consumers, whereas pure bundling
or the lack of targeting forces advertisers to treat different
types of consumers as if they were the same.

1[5] and [24] also note that such a trade-off is likely to arise
as a result of improved targeting.



Thus to analyze whether improvements in targeting tech-
nology increase revenue from auctions for advertisements,
we can analyze whether enabling advertisers to learn more
detailed information about their value before bidding would
increase revenue from the auction. In particular, under tar-
geting, we assume that the targeting information enables
an advertiser to learn his exact value for advertising to a
consumer before deciding how much to bid for an advertise-
ment. By contrast, when an advertiser is unable to target,
the advertiser only knows that his value for advertising to
this consumer will be a random draw from some distribu-
tion, where the distribution reflects the different values the
advertiser might place on advertising to different types of
consumers. We compare a seller’s expected revenue from
auctions under these two different scenarios.

Throughout we consider a model in which bidders have
private values and bidders’ values are independently dis-
tributed. While this is not the only possible modeling choice,
it is a natural one. There is empirical evidence that there
is little correlation in bidder values within auctions on Mi-
crosoft’s Ad Exchange [10], which [10] indicates implies that
“bidder valuations are private, driven by idiosyncratic match
quality, rather than a common component”. Furthermore, if
there is a common component to bidders’ values that is not
known to any participant and the bidders have private val-
ues that are independent conditional on the common value,
then the results of this paper for the zero reserve price will
continue to hold since the results are attained for each real-
ization of the common component.2

We also frequently make use of the standard hazard rate
condition on the cumulative distribution of the buyers’ val-
ues. Although this assumption is not completely innocuous,
it is satisfied by many distributions frequently encountered
in empirical studies.

In this environment, when advertisements are being sold
via second price auctions, we first demonstrate a result anal-
ogous to that in [8], [18], and [30] which illustrates that tar-
geting decreases revenues when there are two bidders, even
if there are asymmetries in the distributions of the bidders’
values. We next show that when bidders’ values are drawn
from identical distributions, then improved targeting has an
ambiguous effect on revenue when there are three bidders,
but improved targeting increases revenue if there are at least
four bidders. These results are virtually unaffected by the
possibility that a seller can set reserve prices. Finally, we ad-
dress the question of what happens when the bidders’ values
are drawn from different distributions. Here we find that if
the strongest firm wins the auction less than 30.4% of the
time, then improved targeting increases revenue, but target-
ing can reduce revenue when the two strongest bidders win
a disproportionate percentage of the time.

While second price auctions for a single advertising oppor-
tunity are used by most publishers, we also consider posi-
tion auctions, as these are frequently used by search engines
as well as a smaller number of publishers. Here we find
that targeting unambiguously decreases revenue when there
are only a small number of bidders, increases revenue when
there are a large number of bidders, and has an ambiguous

2In addition, we already know from [28] that if there is a
common component to all bidders’ values, then the seller has
an incentive to reveal this common component. [1] further
discusses when information asymmetries in common value
auctions can lead to revenue losses.

effect on revenue when there are an intermediate number
of bidders. When there are an intermediate number of bid-
ders, improved targeting increases revenue if and only if the
click-through rates of the top positions are sufficiently large
compared to the click-through rates of the lower positions.

Finally, we address the question of how improved target-
ing affects revenue when only some advertisers are able to
make use of the targeting information. In this setting we
show that even when there are symmetric bidders whose
values are drawn from a distribution satisfying standard
regularity conditions, it could be the case that a seller’s
revenue may vary non-monotonically with the number of
bidders who are able to make use of the targeting informa-
tion. That is, the seller may be indifferent between targeting
and bundling when only one bidder can target, prefer tar-
geting to bundling when two bidders can target, and prefer
bundling to targeting when three bidders can target. We
also illustrate how improved targeting affects revenue when
there is exactly one bidder who can make use of the targeting
information. We find that this decreases revenue when the
strongest bidder is making use of the targeting information,
increases revenue when the weaker bidders are making use
of the targeting information, and has an ambiguous effect
on revenue for bidders of intermediate strength.

Our paper relates to two distinct strands of literature.
First, our paper relates to the literature on whether a mech-
anism designer should provide information to bidders in a
private value auction that would better help them assess
their values for an object. Here [16] provides examples that
illustrate that improving targeting may decrease revenue in
a private value auction and [17] illustrates that an auction-
eer may have an incentive to release less than full informa-
tion to the bidders when the auctioneer has the ability to
release partial information. [6] considers the optimal infor-
mation structure in a joint design problem in which there
may be a direct tie between the information the seller dis-
closes and the mechanism the seller then uses to sell the
object, [14] addresses the question of how much information
the mechanism designer should provide under the optimal
mechanism which may possibly involve charging the bid-
ders in the auction for providing the information, and [12]
considers questions related to how information disclosure af-
fects the ultimate prices advertisers would charge for their
products. Finally, [7] analyzes the value of targeting data
to advertisers, [18] provides general methods of classifying
the informativeness of signals to bidders in private value
auctions, and [31] conducts field experiments analyzing the
effect of information disclosure on wholesale auto auctions.

The second related strand of literature is work analyz-
ing when sellers would want to bundle goods and sell them
together. [4] and [15] both study a standard bundling frame-
work in which a monopolist considers selling bundles of goods
to buyers, but these papers do not consider situations in
which the goods are sold via an auction. [2], [23], and [26]
study mixed bundling in which a monopolist offers buyers
both the option of buying various goods individually and
the option of buying multiple goods at the same time, pos-
sibly for a discount. [11] studies a model in which a seller
sells two objects via an auction and the seller must decide
whether to sell them separately or via bundling. [20] studies
how a seller’s revenue from selling two objects separately or
from only offering to sell the objects together compares to
the seller’s revenue from an optimal mechanism, which may



not involve either of these approaches. [25] and [33] study
questions related to when a monopolist’s optimal mechanism
involves take-it or leave-it mechanisms that set a price for
each possible collection of goods. Finally, [3] studies ques-
tions related to optimal bundling with multiple sellers.

While these papers are all interesting, they all differ from
our work in significant ways. Our paper differs from the
work on bundling goods together in that very few of these
papers consider models of bundling in an auction setting,
whereas we focus on auctions throughout our paper. Our
paper also differs from the literature on information provi-
sion by a mechanism designer in that these papers do not
attempt to derive the detailed results in this paper on how
the number and sizes of the various bidders affects the suit-
ability of bundling compared to targeting for a fixed auction
format. Furthermore, none of the above papers consider the
problem of whether to sell goods using targeting or bundling
when the seller must use a position auction, and these pa-
pers also do not consider scenarios in which some of the
buyers buy objects using bundling while other buyers buy
the objects separately. Our paper thus makes a number of
new contributions to the literature on information provision
by a mechanism designer and bundling.

2. THE MODEL
Each buyer i ∈ {1, 2, . . . , n} has a value vi that is an in-

dependent draw from the cumulative distribution function
Fi(v) with finite mean and variance, and a corresponding
continuous density fi(v) on its support [0, vi), where vi may
be infinite. These bidders compete in an auction, and bid
either before their value is realized (bundling) or after their
value is realized (targeting). The model also applies to situ-
ations in which bidders do not learn their exact values under
targeting but instead learn estimates vi that are correct in
expectation. Each bidder i’s expected value under bundling
is
∫∞
0
vfi(v) dv =

∫∞
0

1−Fi(v) dv. For convenience we name
the bidders in decreasing order of their expected values so∫∞
0

1− Fi(v) dv ≥
∫∞
0

1− Fi+1(v) dv for all i.
Throughout this manuscript we consider two possible auc-

tion formats that the bidders may compete in. First we con-
sider standard second price auctions in which there is one
object for sale and the bidder who makes the highest bid
wins the object and pays the second highest bid. The re-
sults with symmetric buyers for this format will also extend
to first price auctions by the revenue equivalence theorem.

The second auction format we consider is a position auc-
tion. Position auctions differ from the setting considered
above in that there are s positions, where s is a positive
integer satisfying 1 ≤ s < n. Each position k ≤ s has
a click-through-rate ck > 0, where ck is non-increasing in k
for all k ≤ s. Bidders compete by submitting bids per clicks.
The top position then goes to the bidder with the highest
bid, the second position goes to the bidder with the second
highest bid, and so on, with ties broken randomly.

We consider two methods for setting prices in position
auctions. The first pricing method we consider is a gener-
alized second price (GSP) auction. In this setting, the kth

highest bidder pays a price per click that is equal to the bid
submitted by the k+1th highest bidder. Thus if v(k) denotes

the value of the kth highest bidder and b(k+1) denotes the

bid submitted by the k + 1th highest bidder, then the final

payoff of the kth highest bidder is ck(v(k) − b(k+1)). This
is the same basic model of generalized second price auctions
without clickability of ads that is considered in [13] and [32].

The second possibility we consider is the Vickrey-Clarke-
Groves (VCG) mechanism. Under VCG pricing, each adver-
tiser pays a total cost equal to the externality he imposes on
other bidders by bidding in the auction. Thus under VCG
pricing, the bidder who wins the kth position pays a total
cost of

∑s
j=k(cj − cj+1)b(j+1) and a total price per click

equal to 1
ck

∑s
j=k(cj − cj+1)b(j+1), where we abuse notation

by letting cs+1 ≡ 0.
Finally we also sometimes allow for the possibility of re-

serve prices. If there is a reserve price of r, then only bidders
who bid at least r will be considered in the auction. Under
standard second price auctions, if there is only one bidder
who bids more than the reserve, then this bidder pays r for
the object. Under GSP auctions, if there are only k ≤ s
bidders who bid more than the reserve price, then the pay-
offs of the first k − 1 of these bidders are unaffected by the
reserve price, but the kth highest bidder pays a price of r
per click and obtains a payoff of ck(v(k) − r).

Finally, under position auctions using VCG pricing, we
introduce reserve prices in the following manner: If at least
s+1 bidders submit a bid in the auction that is greater than
the reserve price, then the reserve price has no effect on the
outcome of the auction. If K ≤ s bidders submit a bid in the
auction that is greater than the reserve price, then only the
bidders who submitted a bid greater than the reserve price
have their ads shown and these bidders pay a price per click
equal to the price they would pay if there were exactly K
positions available and there were an additional bidder who
submitted a bid equal to the reserve price. [21] has noted
in a more general setting that this method of introducing
reserve prices into the VCG mechanism both preserves the
incentive for advertisers to bid truthfully and also ensures
that any advertisers who have their ads shown pay a price
per click that is greater than or equal to the reserve price.

3. SECOND PRICE AUCTIONS WITHOUT
RESERVE PRICES

We begin by comparing bundling to targeting in a stan-
dard second price auction setting with no reserve price. Un-
der bundling, all bidders have a weakly dominant strategy
of bidding their expected values. Thus the bidder with the
highest expected value wins and pays the second highest bid,
and the seller’s revenue under bundling is the second highest
expected value or

∫∞
0

1− F2(v) dv.
Under targeting bidders bid their exact values after learn-

ing their values, and the seller’s revenue is the second highest
realized value. The second highest realized value is less than
or equal to v when either the highest value is no greater than
v, or the highest value exceeds v but all other values are less
than or equal v. Thus if v(2) denotes the realization of the
second highest value, the distribution of this realization is
given by the following cumulative distribution function:

Pr(v(2) ≤ v) =

n∏
j=1

Fj(v) +

n∑
j=1

(1− Fj(v))
∏
i 6=j

Fi(v)

=

n∑
j=1

∏
i 6=j

Fi(v)− (n− 1)

n∏
j=1

Fj(v)



From this it follows that the difference between the seller’s
expected revenue under targeting and bundling is ∆n =∫ ∞

0

1−
n∑
j=1

∏
i 6=j

Fi(v) + (n− 1)

n∏
j=1

Fj(v)− (1− F2(v)) dv

=

∫ ∞
0

F2(v)−
n∑
j=1

∏
i 6=j

Fi(v) + (n− 1)

n∏
j=1

Fj(v) dv

First we illustrate that the insight in [18] and [30] that
the seller prefers bundling to targeting when there are two
bidders extends to cases where the values of the bidders are
not drawn from identical distributions:

Theorem 1. Suppose there are n = 2 bidders. Then the
seller prefers bundling to targeting.

Proof. The difference between the seller’s expected rev-
enue under targeting and bundling when there are n = 2
bidders is ∆2 =∫ ∞

0

F2(v)−
2∑
j=1

∏
i 6=j

Fi(v) + (2− 1)

2∏
j=1

Fj(v) dx

=

∫ ∞
0

−F1(v) + F2(v)F1(v) dv =

∫ ∞
0

(F2(v)− 1)F1(v) dv < 0.

Thus the seller prefers bundling to targeting when there
are n = 2 bidders.

Next we consider cases in which the bidders’ values are
drawn from the same distributions. When Fi(v) = F (v) for
all v, the difference between the seller’s expected revenue
under targeting and bundling is

∆n =

∫ ∞
0

F2(v)−
n∑
j=1

∏
i 6=j

Fi(v) + (n− 1)

n∏
j=1

Fj(v) dx

=

∫ ∞
0

F (v)− nFn−1(v) + (n− 1)Fn(v) dv

Now we use this expression for the difference between
the seller’s expected revenue under targeting and bundling
to show that the seller prefers targeting to bundling when
there are n ≥ 4 bidders. Throughout the remainder of this
manuscript, we let f(v) denote the density corresponding to
the cumulative distribution function F (v), and let v denote
the upper bound of the support of F (·).

Theorem 2. Suppose Fi(v) = F (v) for all i, 1−F (v)
f(v)

is

nonincreasing in v throughout its support, and n ≥ 4. Then
the seller prefers targeting to bundling.

Proof. First note that if n ≥ 4, then φ(y) ≡ y2

2
+ y3

3
+

. . .+ yn−1

n−1
− n−1

n
yn ≥ 0 for all y ∈ [0, 1]. φ(y) = yn( y

2−n

2
+

. . .+ yn−n

n
−1), so φ ≥ 0 if and only if y

2−n

2
+. . .+ yn−n

n
−1 ≥

0. And since y2−n

2
+ . . .+ yn−n

n
− 1 is decreasing in y, φ ≥ 0

for all y ∈ [0, 1] if and only if 1
2

+ . . . + 1
n
− 1 ≥ 0, which

holds for all n ≥ 4. Thus φ(y) ≥ 0 for all y ∈ [0, 1] if n ≥ 4.
Now the difference between the seller’s expected revenue

under targeting and bundling when there are n bidders and

Fi(v) = F (v) for all i is ∆n =∫ v

0

F (v)− nFn−1(v) + (n− 1)Fn(v) dx

=

∫ v

0

(
1− F (v)

f(v)

)
(F (v) + . . .+ Fn−2(v)− (n− 1)Fn−1(v))f(v) dv

=

(
1− F (v)

f(v)

)(
F 2(v)

2
+ . . .+

Fn−1(v)

n− 1
− n− 1

n
Fn(v)

) ∣∣∣∣v
0

−
∫ v

0

(
1− F (v)

f(v)

)′(
F 2(v)

2
+ . . .+

Fn−1(v)

n− 1
− n− 1

n
Fn(v)

)
dv

=

(
lim
v→v

1− F (v)

f(v)

)[
1

2
+ . . .+

1

n− 1
− n− 1

n

]
−
∫ v

0

(
1− F (v)

f(v)

)′ [
F 2(v)

2
+ . . .+

Fn−1(v)

n− 1
− n− 1

n
Fn(v)

]
dv

By the result in the first paragraph of this proof, both
the terms in square brackets are positive for all v. Also,

the term limv→v
1−F (v)
f(v)

is non-negative since 1−F (v)
f(v)

is non-

negative for all v, and the term
(

1−F (v)
f(v)

)′
is non-positive by

assumption. Thus ∆n ≥ 0 and the seller prefers targeting
to bundling.

Thus, in the symmetric case, when there are at least four
bidders and the usual hazard rate condition is satisfied, tar-
geting dominates bundling. The reason for this is that the
second highest realized value (the revenue under targeting)
when there are at least four bidders is greater than the av-
erage value of these bidders (the revenue under bundling)
as long as the distribution does not have fat tails. The pos-
sibility of fat tails is ruled out by the standard hazard rate
condition, so targeting dominates bundling when there are
n = 4 bidders in this case.3 A similar approach can illumi-
nate the case of three bidders.

Theorem 3. Suppose Fi(v) = F (v) for all i and there are
n = 3 bidders. Then the seller prefers targeting to bundling
if f(v) is increasing in v on its support, prefers bundling
to targeting if f(v) is decreasing in v on its support, and is
indifferent between targeting and bundling if f(v) is constant
on its support.

Proof. The difference between the seller’s expected rev-
enue under targeting and bundling when there are n = 3
bidders is ∆3 =∫ v

0

F (v)− 3F 2(v) + 2F 3(v) dv

=

∫ v

0

1

f(v)
(F (v)− 3F 2(v) + 2F 3(v))f(v) dv

=
1

f(v)

(
F 2(v)

2
− F 3(v) +

F 4(v)

2

) ∣∣∣∣v
0

−
∫ v

0

(
1

f(v)

)′(
F 2(v)

2
− F 3(v) +

F 4(v)

2

)
dv

=
F 2(v)

2f(v)
(1− F (v))2

∣∣∣∣v
0

−
∫ v

0

(
1

f(v)

)′
F 2(v)

2
(1− F (v))2 dv

3For any finite number of players, there exists a distribution
with sufficiently fat tails such that the seller prefers bundling
to targeting.



Now if f(v) is increasing in v on its support or f(v) is

constant on its support, then F2(v)
2f(v)

(1− F (v))2
∣∣v
0

= 0 and

∆3 = −
∫ v
0

( 1
f(v)

)′ F
2(v)
2

(1− F (v))2 dv. Thus if f(v) is in-

creasing in v on its support, then ∆3 > 0, and if f(v) is
constant on its support, then ∆3 = 0. Similarly, if f(v) is

decreasing in v on its support and F2(v)
2f(v)

(1− F (v))2
∣∣v
0

= 0,

then ∆3 = −
∫ v
0

( 1
f(v)

)′ F
2(v)
2

(1− F (v))2 dv < 0.

If f(v) is decreasing in v and F2(v)
2f(v)

(1− F (v))2
∣∣v
0
6= 0

(which implies v =∞), then consider what ∆3 would equal
if the players’ values were instead random draws from the

distribution F (v|θ) satisfying F (v|θ) = F (v)
F (θ)

for v ≤ θ and

F (v) = 1 for v > θ. For any finite θ > 0, it is necessarily

the case that F2(v|θ)
2f(v|θ) (1− F (v|θ))2

∣∣v|θ
0

= 0, where f(v|θ)
denotes the density corresponding to F (v|θ) and v|θ denotes
the upper bound on the support of F (v|θ). Moreover, f(v|θ)
is decreasing in v on its support, so ∆3 < 0 when the players’
values are random draws from F (v|θ). Furthermore, ∆3

must be bounded away from 0 for all θ ≥ θ∗, where θ∗ is
some constant in the interior of the support of F (·).

But in the limit as θ becomes arbitrarily large, the value
of ∆3 when the values of the players are random draws
from the distribution F (v|θ) becomes arbitrarily close to
the value of ∆3 when the values of the players are random
draws from the distribution F (v). From this it follows that
if f(v) is decreasing in v on its support, then ∆3 < 0 even

if F2(v)
2f(v)

(1− F (v))2
∣∣v
0
6= 0. The result then follows.

The fact that a seller may either prefer bundling or tar-
geting when there are three bidders is intuitive. When there
are three bidders, the second highest value is the median
value, so the seller’s expected revenue under targeting is
just the median value of the bidders. The seller’s expected
revenue under bundling is the expected value of the bid-
ders. Whether a seller prefers targeting to bundling simply
depends on whether the mean or the median of a certain
distribution is greater.

In summary, when the buyers’ values are drawn from iden-
tical continuous distributions, the seller typically prefers tar-
geting to bundling when there are four or more bidders,
while the seller prefers bundling to targeting when there are
two bidders. The seller’s exact preferences in the case where
there are three bidders depend on the distribution, but since
most natural distributions of values have a density f(v) that
is decreasing on most of its support, the seller is also likely
to prefer bundling to targeting when there are three bidders.

4. RESERVE PRICES
When there is more than one bidder, in symmetric settings

appropriate reserve prices favor targeting. Adding reserve
prices does not improve the seller’s revenue under bundling
since the seller’s revenue is equal to the bidders’ expected
values regardless of whether the seller uses a reserve price,
but reserve prices do increase the revenue from targeting.
Thus when there are four or more bidders, targeting with
reserve prices dominates bundling with reserve prices.

However, while reserve prices increase the revenue from
targeting but not the revenue from bundling, it is still the
case that the seller typically prefers bundling to targeting
when there are two bidders. This is illustrated below:

Theorem 4. Suppose there are n = 2 bidders, Fi(v) =
F (v) for all i, and the density f(v) is non-increasing in v.
Then the seller prefers bundling to targeting with the optimal
reserve price.

Proof. We know from [9] that when f(v) is non-increasing
in v, the seller’s expected revenue in an auction with two bid-
ders and the optimal reserve price is lower than the seller’s
expected revenue in an auction with three bidders and no
reserve price. However, we know from Theorem 3 that when
Fi(v) = F (v) for all i, and the density f(v) is non-increasing
in v, then the seller prefers bundling to targeting when there
are n = 3 bidders and no reserve price. Since the seller’s ex-
pected revenue under targeting when there are two bidders
with the optimal reserve price is even lower than the seller’s
expected revenue under targeting when there are three bid-
ders and no reserve price, it then follows that the seller
prefers bundling to targeting when there are n = 2 bidders,
even if the seller uses the optimal reserve price.

In addition to bundling still typically being optimal in
the case where there are two bidders, it is also the case that
the seller will sometimes want to use bundling even when
there are three bidders. Although the seller now prefers
targeting to bundling in the case where the buyers’ values
are drawn from a uniform distribution, the seller still prefers
bundling to targeting when the buyers’ values are drawn
from an exponential distribution, even if the seller uses the
optimal reserve price:

Theorem 5. Suppose there are n = 3 bidders and Fi(v) =
F (v) for all i. Then the seller prefers targeting to bundling
when the bidders’ values are drawn from the uniform distri-
bution, but the seller prefers bundling to targeting when the
bidders’ values are drawn from the exponential distribution.

Proof. When there are n = 3 bidders and each bidder’s
value is an independent and identically distributed draw
from the uniform distribution, we know from Theorem 3
that the seller is indifferent between bundling and targeting
when there is no reserve price. Since setting the optimal
reserve price increases the seller’s revenue under targeting
but not under bundling, it then follows that when there are
n = 3 bidders and the seller sets the optimal reserve price,
the seller obtains greater revenue under targeting than un-
der bundling when the bidders’ values are drawn from the
uniform distribution.

Now suppose there are n = 3 bidders and the bidders’ val-
ues are independent and identically distributed draws from
the exponential distribution with cumulative distribution
function F (v) = 1 − e−v. If there is no targeting, then
all bidders bid their expected value of 1, and the seller’s
revenue will be 1. If there is targeting, then the seller’s opti-

mal reserve price r satisfies r = 1−F (r)
f(r)

= 1, and the seller’s

expected revenue is∫ ∞
r

(
v − 1− F (v)

f(v)

)
nF (v)n−1f(v) dv

=

∫ ∞
1

(v − 1)nF (v)n−1f(v) dv

= −(v − 1)(1− F (v)n)

∣∣∣∣∞
1

+

∫ ∞
1

1− F (v)n dv

=

∫ ∞
1

1− (1− e−v)3 dv =
2− 9e+ 18e2

6e3
< 1.



Thus the seller prefers bundling to targeting when the bid-
ders’ values are drawn from the exponential distribution.

5. ASYMMETRIC BIDDERS WITHOUT RE-
SERVE PRICES

We now consider a scenario in which the values of the bid-
ders are not all drawn from the same distribution. In partic-
ular, we consider a scenario in which there is some cumula-
tive distribution function F (v) and some values α1, . . . , αn
satisfying α1 ≥ α2 ≥ . . . ≥ αn > 0 such that Fi(v) = F (v)αi

for all i. This formulation is useful because the values of αi
have a natural interpretation in terms of the bidders’ prob-
abilities of winning the auction. If A ≡

∑n
j=1 αj , then the

probability bidder j has the highest value is

Pr(vj > vi ∀ i 6= j) =

∫ ∞
0

∏
i 6=j

Fi(v)αjF (v)αj−1f(v) dv =
αj
A

We now give a result that expresses the circumstances
under which targeting is preferred to bundling as a function
of the probabilities the various bidders win the auction.

Lemma 1. Suppose that Fi(v) = F (v)αi for some α1, . . . , αn
satisfying α1 ≥ α2 ≥ . . . ≥ αn > 0, α2 is sufficiently

large, n ≥ 3, and 1−F (v)
f(v)

is nonincreasing in v. Then if

α2
A
≤
(
1− α1

A

) (
1− α2

A

) 1−α1/A
α2/A , the seller prefers targeting

to bundling.

We defer the proof of this result to the full version of the
paper [22]. The inequality in Lemma 1 is a function only
of two variables, α1

A
and α2

A
, and indicates that we can give

conditions under which targeting is preferred to bundling
solely in terms of the probabilities the strongest bidders will
win the auction. We now seek to show when this inequality
is satisfied given that α1 and α2 must meet the constraints
0 ≤ α2

A
≤ min{α1

A
, 1− α1

A
}.

Theorem 6. The inequality in Lemma 1 is satisfied if
α1
A
≤ 0.30366. If α1

A
> 0.30366, there exists some y∗ ∈

(0,min{α1
A
, 1 − α1

A
}) such that this inequality is satisfied if

and only if α2
A
≤ y∗. Furthermore, if this key value of y∗ is

taken as a function of α1
A

, y∗(α1
A

)/(1− α1
A

) is increasing in
α1
A

and as α1
A
→ 1, y∗(α1

A
)/(1− α1

A
)→ 1.

Proof. First we show that there is some y∗ ∈ (0, 1− α1
A

)
such that the inequality in Lemma 1 is satisfied if and only if
α2
A
≤ y∗. Note that α2

A
≤
(
1− α1

A

) (
1− α2

A

) 1−α1/A
α2/A holds if

and only if α2/A
1−α1/A

≤
(
1− α2

A

) 1−α1/A
α2/A . Now let β ≡ α2

A
and

let γ ≡ 1− α1
A

. We can rewrite this inequality in terms of β

and γ as β
γ
≤ (1−β)γ/β or (β/γ)(β/γ) ≤ 1−β. And if x ≡ β

γ
,

then we can further rewrite this inequality as xx ≤ 1−γx or
xx + γx ≤ 1. Now g(x; γ) ≡ xx + γx is a convex function of
x that satisfies g(0; γ) = 1, g(1; γ) = 1 + γ and g′(0) = −∞.
Thus g(x; γ) ≤ 1 if x is sufficiently close to 0, g(x; γ) > 1 if
x is sufficiently close to 1, and there is some x∗(γ) ∈ (0, 1)
such that g(x; γ) ≤ 1 if and only if x ≤ x∗(γ). From this it
follows that this inequality is satisfied if and only if α2

A
≤ y∗

for some y∗ ∈ (0, 1− α1
A

).
The result in the previous paragraph implies that if the

inequality in Lemma 1 is satisfied when α2
A

= α1
A

, then this

inequality is also satisfied for any values of α2
A
≤ α1

A
. Now

the inequality in Lemma 1 is satisfied when α2
A

= α1
A

if and

only if α1
A
≤
(
1− α1

A

) (
1− α1

A

) 1−α1/A
α1/A , which holds if and

only if α1/A
1−α1/A

≤
(
1− α1

A

) 1−α1/A
α1/A . Thus if δ ≡ α1

A
, then this

holds if and only if δ
1−δ ≤ (1− δ)

1−δ
δ or ( δ

1−δ )δ/(1−δ)+δ ≤ 1.

Now h(δ) ≡ ( δ
1−δ )δ/(1−δ) + δ satisfies h(0) = 1, h(1) = ∞,

and h′(0) = −∞. Thus h(δ) ≤ 1 for δ sufficiently close to
0, h(δ) > 1 if δ is sufficiently close to 1, and there is some
δ∗ ∈ (0, 1) such that h(δ∗) ≤ 1 if and only if δ ≤ δ∗. Thus
the inequality in Lemma 1 is satisfied for all α2

A
≤ α1

A
if and

only if α1
A
≤ δ∗, where δ∗ is the unique δ ∈ (0, 1) satisfying

h(δ) = 1. Computationally it follows that δ∗ = 0.30366, so
the inequality in Lemma 1 is satisfied if α1

A
≤ 0.30366, and if

α1
A
> 0.30366, then there is some y∗ ∈ (0,min{α1

A
, 1− α1

A
})

such that this inequality is satisfied if and only if α2
A
≤ y∗.

Furthermore, since g(x; γ) is increasing in γ, the critical
value of x∗(γ) given in the first paragraph of this proof is
decreasing in γ, meaning x∗ is increasing in α1

A
. From this

it follows that for the key value of y∗ above, it must be the
case that y∗(α1

A
)/(1− α1

A
) is increasing in α1

A
. Furthermore,

when γ = 0, x∗(γ) = 1 since g(1; 0) = 1. Thus as α1
A
→ 1,

y∗(α1
A

)/(1− α1
A

)→ 1 as well.

The above result indicates that when α1
A
≤ 0.30366 and

the strongest firm wins the auction less than 30.366% of the
time, there is automatically enough competition in the auc-
tion that targeting will increase revenue. When the largest
firm is larger than this, then improved targeting will increase
revenue if and only if the second largest firm is sufficiently
small and there is enough competition from other firms.

Interestingly, the result that y∗(α1
A

)/(1 − α1
A

) is increas-
ing in α1

A
indicates that as the strongest firm becomes more

dominant, the second strongest firm can be relatively stronger
compared to the weaker firms without changing the result
that targeting increases revenue. Furthermore, as α1

A
→ 1

and the strongest firm becomes arbitrarily strong, y∗(α1
A

)/(1−
α1
A

)→ 1, indicating that the second strongest firm can also
become arbitrarily strong relative to the weaker firms and
still ensure that targeting increases revenue. This makes
sense intuitively since when the strongest firm becomes more
dominant, there is a greater need to allow targeting to in-
crease the chances that the strongest firm will be given a
substantial challenge in the auction.

6. POSITION AUCTIONS
Having discussed whether targeting is preferred to bundling

in the case of a single object auction, we now consider how
the results would be affected by using position auctions. We
focus on the case where Fi(v) = F (v) for all i, and F (v) has
compact support [0, v].

In this symmetric case, if the seller uses bundling, and all
bidders bid before learning the realizations of their values,
then all bidders have an expected value for a click that equals∫ v
0

1−F (v) dv and it is an equilibrium for all bidders to bid
this expected value regardless of whether we use GSP or
VCG pricing. Total revenue for the seller under bundling is

therefore equal to
∑s
k=1 ck

∫ v
0

1− F (v) dv.
Next we consider the case in which bidders bid after learn-

ing the realizations of their values. We assume that when



bidders bid that they know their own values but they do not
know the bids or the values of any of the other bidders.

Throughout our analysis of targeting, we assume that
there is a symmetric pure strategy equilibrium in which bid-
ders follow monotonic bidding strategies. This assumption
is a mild assumption for two reasons. First, we show in [22]
that when bidders are restricted to making bids in discrete
increments of ε for some small ε > 0 that there exists a sym-
metric pure strategy equilibrium in which bidders follow the
same monotonic bidding strategies. This assumption that
bidders bid in discrete increments is realistic in situations
in which bidders cannot adjust their bids by less than some
very small amount (such as a small fraction of a penny).

Second, [19] has already illustrated that for a wide vari-
ety of cases, there exists a symmetric pure strategy equi-
librium in which bidders follow strictly monotonic bidding
strategies, even if the players may submit bids along a con-
tinuous scale. We thus take symmetric monotonic equilibria
as a starting point and use this to address the question of
whether targeting is preferred to bundling for the seller.

When bidders follow a symmetric monotonic bidding strat-
egy in equilibrium, the seller’s expected revenue in the GSP
auction is pinned down by the following lemma:

Lemma 2. Suppose Fi(v) = F (v) for all i and the bid-
ders use a symmetric and strictly monotonic bidding strat-
egy b(v) in equilibrium. Then expected revenue in GSP auc-

tions equals n
∫ v
r

∑s
k=1 ck

(
n−1
k−1

)
(1 − F (v))k−1F (v)n−k(v −

1−F (v)
f(v)

)f(v) dv.

We defer the proof of this result to the full version of
the paper [22]. The above result illustrates that there is
a natural correspondence between the seller’s expected rev-
enue in a single auction setting and the seller’s revenue in
a generalized second price auction with private values. In a
standard private values auction setting, the seller’s expected
revenue is just the expectation of the highest virtual valu-

ation v − 1−F (v)
f(v)

. In a GSP auction, the only difference is

that the seller’s expected revenue is now the sum of the ex-

pectations of the jth highest virtual valuations v − 1−F (v)
f(v)

weighted by the various click-through rates.
The seller’s revenue in GSP auctions also turns out to be

the exact same as the seller’s revenue in position auctions us-
ing VCG pricing. [21] has characterized the seller’s revenue
in a more general class of position auctions when prices for
advertising are set according to VCG pricing. In the special
case of [21] corresponding to the model considered in the
present paper, the seller’s revenue under VCG pricing is the
exact same as the seller’s revenue in Lemma 2.

Now we use the above result to address the question of
whether the seller prefers targeting or bundling when there
are no more than s positions in the auction for some fixed s.
Our characterization of the circumstances under which the
seller prefers targeting to bundling illustrates that there are
some natural similarities between the situations in which the
seller prefers targeting to bundling in position auctions and
standard auctions for a single object. When there is a rela-
tively small number of players, the seller prefers bundling to
targeting, and when there is a larger number of players, the
seller prefers targeting to bundling. For intermediate num-
bers of players, it is ambiguous whether the seller prefers
targeting to bundling. This result is formalized in the fol-
lowing theorem:

Theorem 7. Suppose Fi(v) = F (v) for all i, v − 1−F (v)
f(v)

is increasing in v, the bidders use a symmetric and strictly
monotonic bidding strategy b(v) in equilibrium under GSP
pricing, and the reserve price is either zero or the optimal
reserve. Then the following hold regardless of whether the
seller uses GSP or VCG pricing:

(1). There exists some n∗ ≥ 2 such that bundling is always
preferred to targeting if and only if n ≤ n∗.

(2). There exists some n∗∗ > n∗ such that targeting is
always preferred to bundling if and only if n ≥ n∗∗.

(3). For values of n ∈ (n∗, n∗∗), there exists some positive
integer k∗ < s such that targeting is preferred to bundling if
and only if the values of ck for k ≤ k∗ are sufficiently large
compared to the values of ck for k > k∗. Moreover, this k∗

is nondecreasing in n.

Proof. The seller’s expected revenue from targeting un-
der the conditions of the theorem can be rewritten as∑s
k=1 ckE

[
v(k) −

1−F (v(k))

f(v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r), where v(k)

denotes the kth highest value of n draws from the distribu-
tion F . We use this to prove each of the three results.

First note that in the limit as n→∞,

E
[
v(k) −

1−F (v(k))

f(v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r) → v for all k

since in the limit as n → ∞, v(k) → v and
1−F (v(k))

f(v(k))
→ 0

with probability arbitrarily close to 1 for all k. Thus in the
limit as n →∞, the expected revenue from the mechanism
under targeting approaches

∑s
k=1 ckv. By contrast, under

bundling, all bidders bid w ≡
∫ v
0

1 − F (v) dv < v, and
the total expected revenue under bundling is

∑s
k=1 ckw <∑s

k=1 ckv. From this it follows that for sufficiently large val-
ues of n, the expected revenue from targeting exceeds the
expected revenue from bundling for all values of ck.

Also note that E
[
v(k) −

1−F (v(k))

f(v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r)

is increasing in n for all k since the distribution of the kth

highest of n + 1 draws from the cumulative distribution
function F first order stochastically dominates the distri-
bution of the kth highest of n draws from the cumulative
distribution function F and the kth highest virtual valua-

tion v(k) −
1−F (v(k))

f(v(k))
is strictly increasing in the kth highest

value v(k). From this it follows that the expected revenue
from the mechanism under targeting is strictly increasing in
n. But we have seen the expected revenue from the mecha-
nism under bundling is

∑s
k=1 ckw, which is independent of

n. Combining this with the results in the previous para-
graph shows that there is some n∗∗ such that targeting is
always preferred to bundling if and only if n ≥ n∗∗.

Next note that if n = 2, then bundling is strictly preferred
to targeting. If n = 2, then it must be the case that s = 1
and the position auction is equivalent to a standard second
price auction. But we have already seen that under the stan-
dard second price auction that bundling is strictly preferred
to targeting when n = 2. Thus bundling is also preferred
to targeting in position auctions when n = 2. And we have
also seen that the seller’s expected revenue from targeting is
strictly increasing in n, while the seller’s expected revenue
from bundling is independent of n. Combining these facts
shows that there is some n∗ ≥ 2 such that bundling is always
preferred to targeting if and only if n ≤ n∗.

Finally consider values of n ∈ (n∗, n∗∗) for which it is nei-
ther the case that targeting is always preferred to bundling
or that bundling is always preferred to targeting. The seller’s



expected revenue under targeting is∑s
k=1 ckE

[
v(k) −

1−F (v(k))

f(v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r), whereas

the seller’s expected revenue under bundling is
∑s
k=1 ckw,

where w ≡
∫ v
0

1−F (v) dv < v. Thus the difference between
the seller’s expected revenue under targeting and the seller’s
expected revenue under bundling is∑s
k=1 ck(E

[
v(k) −

1−F (v(k))

f(v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r)−w). But

E
[
v(k) −

1−F (v(k))

f(v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r) is decreasing in k

since the distribution of the kth highest of n draws from the
cumulative distribution function F first order stochastically
dominates the distribution of the k+ 1th highest of n draws
from the cumulative distribution function F and the kth

highest virtual valuation v(k)−
1−F (v(k))

f(v(k))
is strictly increasing

in the kth highest value v(k). Thus there is some k∗ ∈ [1, s)

such that E
[
v(k) −

1−F (v(k))

f(v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r) > w if

and only if k ≤ k∗.
But from this it follows that the difference between the

seller’s expected revenue under targeting and the seller’s ex-
pected revenue under bundling,∑s
k=1 ck(E

[
v(k) −

1−F (v(k))

f(v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r) − w), is

strictly decreasing in ck for all k > k∗ and strictly increasing
in ck for all k ≤ k∗. From this it follows that for values of
n ∈ (n∗, n∗∗), there is some k∗ ∈ [1, s) such that targeting is
preferred to bundling if and only if the values of ck for k ≤ k∗
are sufficiently large compared to the values of ck for k > k∗.

Moreover, since E
[
v(k) −

1−F (v(k))

f(v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r) is

increasing in n for all k, the relevant value of k∗ ∈ [1, s) for

which E
[
v(k) −

1−F (v(k))

f(v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r) > w if and

only if k ≤ k∗ is nondecreasing in n. Thus the k∗ ∈ [1, s) for
which targeting is preferred to bundling if and only if the
values of ck for k ≤ k∗ are sufficiently large compared to the
values of ck for k > k∗ is also nondecreasing in n.

To understand the intuition behind this result, note that
the number of players in position auctions never has any
effect on seller revenues under bundling because the players
always bid their (identical) expected values under bundling.
But seller revenues are increasing in the number of bidders in
position auctions because the expectations of the kth highest

virtual valuations v− 1−F (v)
f(v)

are all increasing in the number

of players. This explains the observed comparative statics
results with respect to the number of players in Theorem 7.

The comparative statics results in part (3) of Theorem 7
follow from the difference between the seller’s expected rev-
enue from each position in the position auction under tar-
geting and bundling. Under targeting, the seller’s expected
revenue per click from the top positions is greater than the
seller’s expected revenue per click from the bottom posi-
tions, but the seller’s expected revenue per click is indepen-
dent of position under bundling. Thus situations in which
the top positions contribute a disproportionate percentage
of revenues compared to bottom positions make targeting a
better choice, whereas situations in which the bottom po-
sitions contribute a substantial percentage of revenues may
make bundling a better choice. This gives the comparative
statics results given in part (3) of Theorem 7.

Finally we give an example to give a sense of the values
n∗ and n∗∗ that arise in Theorem 7. When the players’

values are drawn from the uniform distribution and there is
no reserve price, we obtain the following result:

Theorem 8. Suppose the bidders’ values are independent
draws from the uniform distribution on [0, 1] and there is no
reserve price. Then the appropriate values for n∗ and n∗∗

in Theorem 7 are n∗ = 3 and n∗∗ = 2s+ 1.

Proof. Under position auctions, the seller’s expected rev-
enue from targeting equals the seller’s expected revenue un-
der the VCG mechanism, which is

∑s
k=1 k(ck−ck+1)E[v(k+1)],

where v(k) denotes the value of the bidder with the kth high-
est value, and cs+1 ≡ 0. Now when the bidders’ values are
draw from the uniform distribution on [0, 1], it is necessarily
the case that E[v(k+1)] = 1 − k+1

n+1
= n−k

n+1
, so the seller’s

revenue under targeting is
∑s
k=1

k(n−k)
n+1

(ck − ck+1). Also,

since the bidders all make a bid of 1
2

under bundling, the

seller’s revenue under bundling is 1
2

∑s
k=1 ck.

Now if n = 3, then s ≤ 2, and the seller’s revenue under
targeting reduces to 1

2
(c1−c2)+ 1

2
c2 = 1

2
c1, while the seller’s

revenue under bundling is 1
2
(c1 + c2). From this it follows

that if n = 3, then bundling dominates targeting. If n = 4,
then s ≤ 3, and the seller’s revenue under targeting reduces
to 3

5
(c1 − c2) + 4

5
(c2 − c3) + 3

5
c3 = 3

5
c1 + 1

5
(c2 − c3), but the

seller’s revenue under bundling is 1
2
(c1 + c2 + c3). From this

it follows that if c2 = c3 = 0, then the seller’s revenue under
targeting is greater than the seller’s revenue under bundling,
but if c2 = c3 = c1, then the seller’s revenue under bundling
is greater than the seller’s revenue under targeting. Thus
the key value of n∗ in Theorem 7 is n∗ = 3.

Now by part (3) of Theorem 7, we know that if the seller’s
revenue under targeting is greater than the seller’s revenue
under bundling when c2 = . . . = cs = c1, then the seller’s
revenue under targeting is greater than the seller’s revenue
under bundling for all possible values of the click-through
rates. Now when c1 = c2 = . . . = cs, the seller’s revenue

under targeting is
∑s
k=1

k(n−k)
n+1

(ck − ck+1) = s(n−s)
n+1

c1, and
the seller’s revenue under bundling is s

2
c1, so the seller’s

revenue under targeting is greater than the seller’s revenue
under bundling if and only if n−s

n+1
≥ 1

2
, which holds if and

only if n ≥ 2s + 1. From this it follows that the seller’s
revenue under targeting is only guaranteed to be greater
than the seller’s revenue under bundling if n ≥ 2s+ 1.

By combining the results in the previous two paragraphs,
it follows that, under the conditions of the theorem, the
critical values n∗ and n∗∗ in Theorem 7 are n∗ = 3 and
n∗∗ = 2s+ 1 respectively.

7. WHAT IF NOT ALL BIDDERS CAN TAR-
GET?

So far in this manuscript we have compared scenarios in
which all bidders can target with scenarios in which not all
bidders can target. While this an important baseline, there
may also be some important scenarios in which certain tar-
geting information would only help some bidders more accu-
rately assess the values they have for a particular advertise-
ment. Additionally, a seller may want to experiment with
making targeting information available to certain advertis-
ers but not to others. This section explores the consequences
of only allowing certain bidders to target.



As before, we consider a model in which there are n bid-
ders, and bidder i’s value, vi, is an independent draw from
the cumulative distribution function Fi with corresponding
density fi. If bidder i is able to target, he learns his value
before placing a bid, but if bidder i is not able to target,
then the bidder simply knows that his expected value for a
click equals

∫∞
0
vfi(v) dv =

∫∞
0

1−Fi(v) dv. For notational

convenience, we assume throughout that
∫∞
0

1−Fi(v) dv ≥∫∞
0

1− Fi+1(v) dv for all i.
First we address whether the types of comparative statics

results that we obtained in the previous sections continue
to hold when only some of the bidders are able to target.
Previously we obtained results that suggested that targeting
is more likely to be preferred to bundling when there are
more bidders who can target. While one might expect this
result to continue to hold when only some bidders can target,
this is not the case, as the following result illustrates:

Theorem 9. A seller’s expected revenue from targeting
need not be monotonic in the number of bidders that can
target in an auction for a single object.

Proof. Suppose there are n = 4 bidders and each bid-
der’s value is an independent and identically distributed
draw from the lognormal distribution with parameters µ < 0
and σ2 = −2µ. Note that if no bidders are able to target,

then each bidder has an expected value of eµ+σ
2/2 = 1, each

bidder bids this amount, and the seller’s revenue is 1. If
exactly one bidder is able to target, then three of the bid-
ders only know that they have an expected value equal to
1, these three bidders all bid this amount, and the seller’s
revenue is again 1.

If exactly two bidders are able to target, then the two
bidders that are not able to target both only know that they
have an expected value equal to 1, these two bidders both
bid this amount, and the seller’s revenue is always at least
1. At the same time, there is a strictly positive probability
that both sellers that are able to target will learn that their
values are greater than 1, these sellers will both bid more
than 1, and the seller’s revenue will be greater than 1. Thus
if exactly two bidders are able to target, then the seller’s
expected revenue in the auction is strictly greater than 1.

Now consider what happens when exactly three bidders
are able to target in the limit as µ → −∞ and σ2 = −2µ.
Note that if exactly one of the three bidders who is able to
target learns that his value is greater than 1 and the other
bidders who are able to target learn that their values are
less than or equal to 1, then the the seller’s revenue will
be the exact same as it would be if no bidders were able
to target. Thus whether it is beneficial for the seller to
allow targeting depends on the relative costs and benefits
from circumstances in which all three bidders who are able
to target learn that their values are less than 1 with the
circumstances under which at least two bidders learn that
their values are greater than or equal to 1.

Note that the probability that a given bidder has a value
less than c for any c > 0 goes to one in the limit as µ→ −∞
when σ2 = −2µ. From this it follows that, conditional on
a buyer having a value less than 1, the expectation of the
buyer’s value goes to zero in the limit as µ → −∞ when
σ2 = −2µ. Similarly, if p(µ) denotes the probability that
a buyer has a value greater than 1 for a given µ < 0 when
σ2 = −2µ, it follows that limµ→−∞ p(µ) = 0. Thus when

exactly three bidders are able to target, in the limit as µ→
−∞ and σ2 = −2µ, the probability all three bidders that are
able to target learn that their values are less than or equal
1 goes to 1, and conditional on this event taking place, the
expectation of the highest of these three bidders’ values goes
to 0.

Now a bidder’s expected value is (1 − p(µ))E[v|v ≤ 1] +
p(µ)E[v|v > 1]. And we know that in the limit as µ→ −∞
when σ2 = −2µ, we have p(µ) → 0 and E[v|v ≤ 1] → 0.
Thus since each bidder has an expected value of 1, it follows
that in the limit as µ → −∞ when σ2 = −2µ, we must
have p(µ)E[v|v > 1] → 1, meaning E[v|v > 1] = Θ( 1

p(µ)
).

But the probability that at least two of the bidders who are
allowed to target learn that their values are greater than or
equal to 1 is O(p(µ)2) in the limit as µ → −∞. And the
expectation of the second highest of these bidders’ values
given that at least two of these bidders have values greater
than 1 is no greater than E[v|v > 1] = Θ( 1

p(µ)
). From this

it follows that the total expected benefit to allowing exactly
three bidders to target from the circumstances in which at
least two bidders learn that their values are greater than or
equal to 1 is O(p(µ)2 1

p(µ)
) = O(p(µ)), which goes to zero in

the limit as µ→ −∞ when σ2 = −2µ.
But we have seen that the total expected costs to the seller

from allowing exactly three bidders to target that result from
the circumstances in which all three bidders who are able to
target learn that their values are less than 1 is roughly 1
unit of revenue in expectation in the limit as µ→ −∞ when
σ2 = −2µ. It thus follows that for sufficiently negative val-
ues of µ and σ2 = −2µ, a seller’s expected revenue from
allowing exactly three bidders to target is lower than the
seller’s expected revenue from not allowing any bidders to
target. From this it follows that a seller’s expected revenue
from targeting need not be monotonic in the number of bid-
ders that can target.

Theorem 9 illustrates that a seller’s expected revenue from
targeting need not increase in the number of bidders who
are able to target when we fix the number of bidders and
vary the number of bidders that are allowed to target. In
fact, our proof illustrates a stronger result. It is possible
that whether a seller will want to allow targeting may vary
nonmonotonically with the number of bidders that are able
to target. It may be the case that the seller is indifferent
between targeting and bundling when exactly one bidder can
target, the seller strictly prefers targeting to bundling when
exactly two bidders can target, and the seller strictly prefers
bundling to targeting when exactly three bidders can target.

These non-monotonicities are especially likely to arise in
cases where the values of the bidders are drawn from dis-
tributions with fat tails. Then if there are four bidders but
only one bidder can target, the second highest price in the
auction is always the same as it would be if there were no tar-
geting. If two bidders can target, this second highest price
is always at least this high and sometimes strictly larger, so
targeting is preferred to bundling. But if three bidders can
target, then it is very likely that these bidders will all learn
they have a very small value, the seller’s revenue is likely to
be very small, and bundling will be preferred to targeting.

Now we turn to the question of how allowing just one bid-
der to target would affect seller revenues when the buyers’
values are drawn from different distributions. This situa-
tion is important because some targeting information may



only affect one bidder’s estimate of the bidder’s value for
advertising to a certain user.

Theorem 10. Suppose that only one bidder will be able
to make use of certain targeting information in an auction
for a single object. Then the following results hold:

(1). The seller strictly prefers bundling to targeting if the
bidder with the highest expected value is the only bidder that
can target.

(2). The seller strictly prefers targeting to bundling if a
bidder with the kth highest expected value for some k ≥ 3 is
the only bidder that can target.

(3). If a bidder with the second highest expected value
is the only bidder that can target, then the seller prefers
targeting to bundling if and only if the values of the highest
and third highest expected bids are sufficiently high.

Proof. If the bidder with the highest expected value is
the only bidder that can target and this bidder learns that
his value exceeds the second highest expected value, then
the seller’s revenue is unaffected by targeting. But if this
bidder learns that his value is lower than the second highest
expected value, then allowing targeting decreases the seller’s
revenue. Thus the seller prefers bundling to targeting if the
bidder with the highest expected value is the only bidder
that can target.

Similarly, if a bidder with the kth highest expected value
for some k ≥ 3 is the only bidder that can target and this
bidder learns that his value is less than or equal to the second
highest expected value, then the seller’s revenue is unaffected
by targeting. But if a bidder with the kth highest expected
value for some k ≥ 3 learns that his value is greater than the
second highest expected value, then targeting increases the
seller’s revenue. Thus the seller prefers targeting to bundling
if a bidder with the kth highest expected value for some
k ≥ 3 is the only bidder that can target.

Finally, if a bidder with the second highest expected value
is the only bidder that can target, then the second highest
bid is the value of the bidder with the second highest ex-
pected value (if this value is between the highest expected
value and the third highest expected value), the highest ex-
pected value (if this value is less than the value of the bid-
der with the second highest expected value), or the third
highest expected value (if this value is greater than the
value of the bidder with the second highest expected value).

Thus the seller’s expected revenue is
∫ w(3)

0 w(3)f2(v) dv +∫ w(1)

w(3)
vf2(v) dv +

∫∞
w(1)

w(1)f2(v) dv, where w(1) denotes the

highest expected value and w(3) denotes the third highest ex-
pected value. This expression is increasing in both w(1) and
w(3). Furthermore, in the limit as w(3) → w(2), where w(2)

denotes the second highest expected value, and w(1) → ∞,∫ w(3)

0 w(3)f2(v) dv+
∫ w(1)

w(3)
vf2(v) dv+

∫∞
w(1)

w(1)f2(v) dv ap-

proaches
∫ w(2)

0 w(2)f2(v) dv+
∫∞
w(2)

vf2(v) dv >
∫∞
0
vf2(v) dv =

w(2). And in the limit as w(3) → 0 and w(1) → w(2),∫ w(3)

0 w(3)f2(v) dv+
∫ w(1)

w(3)
vf2(v) dv+

∫∞
w(1)

w(1)f2(v) dv ap-

proaches
∫ w(2)

0 vf2(v) dv+
∫∞
w(2)

w(2)f2(v) dv <
∫∞
0
vf2(v) dv =

w(2). Combining these results shows that if a bidder with
the second highest expected value is the only bidder that can
target, then the seller prefers targeting to bundling if and
only if the values of the highest and third highest expected
bids are sufficiently high.

Theorem 10 suggests that it is not in a seller’s interest to
enable targeting if only the strongest bidder will be able to
make use of the targeting information, it is in a seller’s inter-
est to improve targeting if only the weakest bidders will be
able to make use of the targeting information, and it may or
may not be in a seller’s interest to improve targeting if only
intermediate-strength bidders will be able to make use of
the targeting. These results are somewhat related to Myer-
son’s [29] insights on optimal auctions. [29] finds that when
asymmetric bidders are competing in an auction, a seller can
increase revenue by giving an artificial bonus to the weaker
bidders. In this setting, the seller can likewise increase rev-
enue when the weaker bidders have the advantage of being
able to target. We show in the full version of the paper [22]
that this insight extends to position auctions as well.

8. CONCLUSION
This paper has analyzed circumstances under which im-

proved targeting increases revenue. We have generally found
that improved targeting increases revenue when there are
a sufficiently large number of serious bidders, but targeting
can hurt revenue when there are just a few dominant bidders.
These types of results tend to hold regardless of whether we
are in a standard second price auction or a position auction,
and regardless of whether the seller uses reserve prices. We
now discuss several possible avenues for future research.

In this paper, we have considered multiple scenarios in
which the bidders’ values are drawn from asymmetric dis-
tributions, but have not considered what happens under po-
sition auctions with asymmetric bidders when each bidder
has private information about his or her value. A natural
question to ask is how the results would extend to posi-
tion auctions when bidders’ values are drawn from different
distributions. In addition, throughout this paper we have
restricted attention to cases in which the bidders have pri-
vate values, and not considered models of common value
auctions. There is little that is known about the equilibria
of position auctions when there is a common component to
bidders’ values, so it is natural ask whether a seller would
want to reveal information that affects a common compo-
nent to bidder preferences in position auctions. We leave
this question for future work.
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