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Abstract. We characterize the optimal loss functions for predicted click-through rates

in auctions for online advertising. While standard loss functions such as mean squared

error or log likelihood severely penalize large mispredictions while imposing little penalty

on smaller mistakes, a loss function reflecting the true economic loss from mispredictions

imposes significant penalties for small mispredictions and only slightly larger penalties on

large mispredictions. We illustrate that when the model is misspecified, using such a loss

function can improve economic efficiency, but the efficiency gain is likely to be small.
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1. Introduction

A loss function represents the loss incurred from making an error in estimation. There

is widespread consensus that the choice of loss function should reflect the actual costs of

misestimation. For example, Moyé (2006) writes “The Bayesian constructs the loss function

to reflect the true consequences of correct and incorrect decisions.” In practice, however,

mean squared error (MSE) and log likelihood (LL) appear to dominate applications, with

other loss functions such as hinge loss and the linex loss (Varian 1974) as distant thirds. For

none of these loss functions is the selection closely guided by the application. This paper

develops loss functions for predicted click-through rates (pCTRs) in Internet advertisement

auctions that reflect the true consequences of estimation errors.
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Auctions for Internet advertising are used in auctions for ads on search engine result

pages, like those of Bing, Google, and Yahoo!, as well as display advertising auctions run

by Google (AdX and AdSense), Facebook (FBX), AppNexus, OpenX and others for a wide

range of web publishers. In most of these auctions, an advertiser only pays if a user clicks

on the advertiser’s ad, which is known as cost-per-click (CPC) pricing, in contrast to cost-

per-impression (CPM) advertising. In order to identify the most valuable ad, it is necessary

to forecast the probability that an individual will click on the ad. For example, if one ad has

a CPC bid of $2, and another ad has a CPC bid of $4, then the ad with a $2 bid is more

valuable if this ad is at least twice as likely to receive a click as the ad with a $4 bid.

Under CPC pricing, the probability of a click needs to be estimated. This is typically

done by using machine learning to fit models involving hundreds of millions or even billions

of categorical (0/1) variables.1 These variables, which are commonly called features, reflect

aspects of the ad, the page on which the ad will be shown, information about the user, and

interactions betweeen these terms that may influence click-through rates (CTRs). Moreover,

a history involving billions of data points per day on users visiting pages with advertisements

is available as training data (McMahan et al. 2013). The standard technique for using this

information to estimate click probabilities is to fit a model using logistic regression (Hilbe

2009). We propose to change this by tailoring the objective function to match the economic

losses that result from misestimates in the cases where the estimates are employed.

The main reason to use a correctly specified loss function is to improve performance under

misspecification. When the model giving the dependence of probabilities on the covariates

is misspecified, even in the limit of an arbitrarily large amount of training data, predictions

and truth will be distinct. Misspecification is almost surely important in the advertising auc-

tion framework because essentially no attention has been paid to specification and it would

be nearly impossible for anyone to perfectly specify a model with such a large number of

explanatory variables. Since the models used in online auctions are likely to be misspecified,

1For instance, McMahan (2013) describes techniques developed by Google to predict the click-through rates
of ads using models “with billions of coefficients” and Yahoo! notes that optimizing its display advertising
inventory requires solving problems “involving tens to hundreds of millions of variables and hundreds of
thousands to millions of constraints” (Yahoo! Labs 2013).
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choosing the loss function to match the actual economic losses from misestimates may be

important despite the enormous amount of data that can be used to fit the models.

We begin by characterizing the economic efficiency loss incurred from a misestimate. When

we mispredict the CTR of an ad, the auction will sometimes run an ad that is not best,

thereby incurring a loss in efficiency. The efficiency loss is determined by whether alternative

ads are close, and as a result, the distribution of alternatives plays a key role in the analysis.

Because of its close connection to the empirical distribution of alternatives, we call our

construct the empirical loss function.

One prominent feature of using the empirical loss function is that misestimates outside the

range of the data on alternatives incur a small marginal penalty. Suppose, for example, that

most eCPMs drawn from the distribution of alternatives fall below $0.02. If an advertiser

then makes a CPC bid of $1, there is little difference between the likely auction outcomes that

result from predicting a CTR of 0.02 or predicting a CTR of 0.03, as the CPC advertiser will

win almost every auction regardless of which of these pCTRs is used. Thus, in contrast to LL

or MSE, the empirical loss function only imposes slightly larger penalties on mispredictions

beyond a certain level of inaccuracy.

There are two significant properties of both MSE and LL. Both are calibrated in the sense

that they are minimized by predicting a CTR equal to the actual CTR, and they are convex,

which ensures that an iterative process like gradient descent can be used to find the minimum

loss. The empirical loss function is also calibrated but it is not convex. Because of the scale

of the estimation problem, it would be difficult to optimize non-convex loss functions in

practice. For this reason, we construct a best convex loss function based on the empirical

loss function that can be more easily used in practice.

Finally we investigate whether using the empirical loss function can improve economic

performance under misspecified models. As we have noted previously, when the model is

misspecified, even with an arbitrarily large amount of data, predictions and truth will be

distinct, and the choice of loss function may matter. We illustrate that using the empirical

loss function rather than LL can indeed improve economic efficiency even when one has an
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arbitrarily large amount of training data through some simulations on misspecified models.

However, our simulations indicate that the efficiency gain is likely to be small.

The most closely related work to our paper is Chapelle (2015), which was completed

after our paper was first circulated. In Chapelle (2015), the author computes the empirical

loss function given in our paper using traffic logs from Criteo. Chapelle (2015) notes that

prediction losses computed using the empirical loss function better correlate with economic

outcomes than the prediction losses computed using MSE.

Our paper also relates to several other distinct strands of literature. First, our paper relates

to the extensive literature in economics, machine learning, and statistics on loss functions

(Arrow 1959; Bartlett et al. 2006; Denuit and Dhaene 2001; Dmochowski et al. 2010; Elliott

et al. 2005; Elliott and Lieli 2013; Manski 2004; Patton and Timmerman 2007; Reid and

Williamson 2010; 2011; Shalit and Yitzhaki 2002; Skalak et al. 2007; Steinwart 2007; Weiss

1996; Zhang 2004). Most of these papers focus on general theoretical questions related to

loss functions, and none considers the best loss function for online advertising auctions.

Some existing work has shown that there can be value to choosing an economically-

motivated loss function in other settings. For instance, Basu and Markov (2004) illustrates

that using linear loss functions instead of quadratic loss can better account for the earnings

forecasts made by analysts. Boudt and Croux (2004) shows how downweighting outliers in

multivariate GARCH models better captures the volatility associated with major stock mar-

ket downturns and Shalit and Yitzhaki (2002) shows how introducing risk aversion to the

estimation procedure can reduce the sensitivity of estimators of beta coefficients for major

firms to extreme observations. Elliott et al. (2005) notes that allowing for asymmetric loss

functions can better account for IMF and OECD forecasts of budget deficits and Patton and

Timmerman (2007) similarly notes that asymmetric loss functions better account for the

Federal Reserve’s forecasts of output growth. And Lieli and White (2010) uses the frame-

work in Elliott and Lieli (2013) to show how a lender can achieve greater profits by using an

estimation method based on the lender’s objectives in making credit-approval decisions.2

2In addition, Cohen et al. (2003) empirically measures the loss functions for suppliers of semiconductor
equipment by considering cancellation, holding, and delay costs.
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Relative to this previous literature, our work differs in several ways. We consider forecasts

of probabilities, whereas these previous papers all consider point estimates of outcomes. We

also derive a convex approximation to the economically relevant loss function so that using

our loss function will be computationally feasible, whereas this consideration does not arise

in any of these previous papers. In addition, we apply our framework to a high-dimensional

problem that would not be feasible in many of these previous frameworks, such as the Elliott

and Lieli (2013) framework. Finally, our paper is the first to consider the question of the

best loss function to use in the context of online auctions for advertising.

2. The Model

In each auction, a machine learning system predicts a CTR for an advertiser who has

submitted a CPC bid into an online ad auction where advertisers are ranked by expected

cost-per-impression (eCPM). Thus if this CPC bidder submits a CPC bid of b and the

machine learning system predicts the ad’s CTR is q, then this advertiser’s eCPM bid is bq.

The CTRs are all for a particular context, and thus may vary from auction to auction.

While the machine learning system predicts a CTR of q, the actual CTR may differ from

this. We let p denote the actual CTR of the CPC ad in question. This probability may

depend on both observed features of the auction x, such as features of the publisher or

the user, and unobserved features ε, so we write p = p̃(x, ε) for some function p̃(·). We

also assume that the highest competing eCPM bid is a random draw from the distribution

G(·|b, x) with corresponding probability density function g(·|b, x).

The dependence of G(·|b, x) on b and x indicates that the highest competing eCPM bid

may be correlated with b and x, which further implies that the highest competing eCPM

bid may be correlated with p. However, we do assume that G(·|b, x) is independent of p

(G(·|b, x, p) = G(·|b, x)) so that for any fixed features of the auction x, also knowing the

CTR for the CPC advertiser p would not enable one to better predict the highest competing

eCPM bid A. This effectively implies that the unobserved features ε also do not influence

the competing bids because they are universally unobserved.
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Throughout we let A denote the highest competing eCPM bid that the advertiser faces.

The value of the highest competing bid will not generally be known at the time we predict

the CTR of the CPC bidder.3 However, one can estimate the distribution of highest com-

peting bids by analyzing past auctions, and then use this distribution G(·) to construct the

loss function. Formulating the highest competing bid as an eCPM bid allows the highest

competing bidder to be bidding on either a CPM or CPC basis, which is important since

CPC bidders often compete against CPM bidders in online advertising auctions.

3. Preliminaries

We first address the question of the appropriate choice of loss function when one wishes

to maximize economic efficiency, or the true eCPM value of the ad that is displayed. Given

our estimate of the pCTR of the CPC ad, we will select the ad in question when bq ≥ A,

and we will select the ad with the highest competing eCPM bid otherwise. In the first case,

the expected total surplus is bp, where p denotes the actual CTR of the CPC ad, but in the

second case the total surplus is A. Thus the expected surplus generated when the machine

learning system predicts a CTR of q is bpPr(bq ≥ A) + E[A|bq < A]Pr(bq < A).4

To derive an appropriate loss function, we must compare the expected surplus generated

by using a pCTR of q with the expected surplus under perfect prediction. We refer to this

as the empirical loss function because it reflects the true empirical loss that results from

misestimates of the pCTRs. We derive the appropriate such loss function in Theorem 1:

Theorem 1. Suppose that one wishes to maximize economic efficiency. Then the correct

loss function from using a pCTR of q when the actual CTR is p is
∫ bq
bp

(bp−A)g(A|b, x) dA.

3For example, when AdSense bids on behalf of Google’s advertisers for advertising opportunities on an ad
exchange (AdX), Google’s advertisers bid on a CPC basis, but the AdX auction is conducted on a CPM basis
and Google must submit CPM bids on behalf of its CPC advertisers without knowing what the competing
bids from other ad networks will be. In order to do this, Google must predict a CTR for the CPC bidder
and use that to convert the CPC bidder’s bid to a CPM bid for the AdX auction.
4If the highest competing ad is a CPC bidder with an uncertain CTR, then the actual efficiency resulting
from showing such an ad may differ from A. However, as long as the pCTRs are unbiased on average, the
expected efficiency that would arise would be A, and all the analysis in our paper would continue to hold.
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Proof. The expected surplus that results from using a pCTR of q when the CTR of the ad

is p is bpPr(bq ≥ A) + E[A|bq < A]Pr(bq < A) =
∫∞
bq
A g(A|b, x) dA +

∫ bq
0
bp g(A|b, x) dA.

Thus the expected surplus that results from correctly predicting that the CTR of an ad is p

is
∫∞
bp
A g(A|b, x) dA+

∫ bp
0
bp g(A|b, x) dA. From this it follows that the efficiency loss from

using a pCTR of q when the CTR of the ad is p is
∫∞
bq
A g(A|b, x) dA+

∫ bq
0
bp g(A|b, x) dA−

[
∫∞
bp
A g(A|b, x) dA+

∫ bp
0
bp g(A|b, x) dA] =

∫ bq
bp

(bp− A)g(A|b, x) dA. �

In most machine learning systems it is standard to use loss functions such as MSE or LL.

Given the result in Theorem 1, it is natural to ask whether these standard loss functions

are compatible with the empirical loss function. Our next result illustrates that there are

some distributions of competing eCPM bids such that the empirical loss function given in

Theorem 1 will be compatible with MSE.

Example 1. Suppose that the highest competing eCPM bid is drawn from a uniform distribu-

tion that is independent of b. Then the empirical loss function is equivalent to MSE because∫ bq
bp

(bp − A)g(A|b, x) dA is proportional to
∫ bq
bp

(bp − A) dA = bp(bq − bp) − (bq)2−(bp)2
2

=

− (bq)2−2(bq)(bp)+(bp)2

2
= − b2

2
(q − p)2, which is equivalent to MSE.

While minimizing the empirical loss function is equivalent to minimizing MSE when the

highest competing eCPM bid is drawn from a uniform distribution, this is not the case for

other distributions. Empirically the uniform distribution is a poor representation of the

distribution of competing eCPM bids, as Lahaie and McAfee (2011), Ostrovsky and Schwarz

(2016), and Sun et al. (2014) have noted that these distributions are better modeled by a

log-normal distribution in sponsored search auctions on Yahoo! and Baidu.

Under more realistic distributions of the highest competing eCPM bid, the empirical loss

function will no longer be equivalent to either MSE or LL. This can be readily seen in Figure

1, where we plot MSE (in a solid black line), LL (in long red dotted lines), and the empirical

loss function (in short blue dotted lines) that results from using a pCTR of q when the actual

CTR of the ad is p = 0.019 and the highest competing eCPM bid is drawn from a log-normal

distribution with parameters µ and σ2.
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Figure 1. In this figure, the blue curve (short dotted lines) represents the em-
pirical loss function, the red curve (long dotted lines) represents LL, and the black
curve (solid line) represents MSE. The magnitudes of all three loss functions are
minimized by using a pCTR equal to the true CTR. However, the empirical loss
function imposes similar penalties on mispredictions that are off by more than some
fixed amount, whereas LL and MSE impose significantly greater penalties for large
mispredictions than for small mispredictions.

This figure indicates that the empirical loss function differs dramatically from MSE and

LL when the highest competing eCPM bid is drawn from a log-normal distribution. Both

MSE and LL impose significantly larger penalties for large mispredictions than they do for

predictions that are only somewhat inaccurate. However, the empirical loss function imposes

nearly identical losses for pCTRs that are off by more than a certain amount.

The reason for this is as follows. If a pCTR is far off the mark, additional errors are

unlikely to affect the outcome of the auction. If one significantly overpredicts the CTR of

an ad, then further overpredictions are unlikely to matter because the ad is going to win the

auction anyway. Similarly, if one significantly underpredicts the CTR of an ad, then further

underpredictions are also unlikely to matter because this ad is not likely to be competitive

in the auction. Thus the loss function should be relatively insensitive to large errors. This

insight also holds for other distributions besides the log-normal distribution:
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Theorem 2. If limA→0 g(A|b, x) = 0 and limA→b g(A|b, x) = 0, then the derivative of the

empirical loss function with respect to the pCTR q becomes arbitrarily small in the limit as

q → 0 or q → 1. However, the magnitudes of the derivative of MSE and LL with respect to

q are increasing in the distance from q to p.5

Theorem 2 underscores how different the empirical loss function is from MSE and LL.

Under MSE and LL, the loss function changes the most when the pCTR is as far away from

the ad’s actual CTR as possible. By contrast, as long as the competing ads are unlikely to

have eCPMs that are either arbitrarily close to zero or arbitrarily large, the empirical loss

function will barely vary with the pCTR when the pCTR is so far from the actual CTR.

Thus the empirical loss function will typically have the exact opposite behavior from MSE

and LL for pCTRs that differ substantially from the true CTRs.

Theorem 2 indicates that the empirical loss function can differ significantly from MSE

and LL, but these standard loss functions do have some desirable properties. In particular,

suppose the auctioneer is uncertain about the true CTR of the ad p. In this case, the

auctioneer may nonetheless have a sense of the likely CTR of this ad, and may believe that

this true CTR is a random draw from some distribution F (·). In this setting, both MSE

and LL are well-calibrated in the sense that the expected values of these loss functions will

be minimized by using a pCTR equal to the expected CTR, EF [p]. We thus wish to verify

that this is also the case for the empirical loss function. This is done in Theorem 3:

Theorem 3. Suppose the true CTR of the ad is unknown. Then the magnitude of the

expected empirical loss function is minimized by a pCTR equal to the expected CTR.

We now turn to other questions about how the properties of the empirical loss func-

tion compare to standard loss functions. One notable difference between the empirical loss

function and standard loss functions regards the dependence of these loss functions on the

5Bax et al. (2012) notes that in auctions for online advertising, typical CTRs for ads are on the order of 1
100

(for search ads) or 1
1000 (for display ads) so the typical eCPMs for competing ads will be no greater than b

100 .
Thus an eCPM bid of b will typically be at least 100 times larger than the typical eCPMs of the competing
ads, and limA→b g(A|b, x) will almost certainly be very close to zero in real auctions.
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advertisers’ bids. While the MSE and LL loss functions are independent of the advertis-

ers’ bids, the empirical loss function is not. Instead, the extent to which the loss function

penalizes overpredictions or underpredictions can depend on the size of an advertiser’s bid:

Theorem 4. Suppose that g(·|b, x) is independent of b and single-peaked at some eCPM

bid Â. Then if bp > (<)Â, the empirical loss function imposes stricter penalties for small

underpredictions (overpredictions) than for small overpredictions (underpredictions).6

While there is nothing inherently wrong with allowing the pCTRs to vary with the bids,

in some applications this might not be desirable because an advertiser may attempt to

manipulate its pCTR by changing its bid. A system designer who wishes to ensure that

an advertiser’s pCTR never depends on its bid may thus wish to design an alternative loss

function that never depends on the particular bids made in any given auction. In this case, an

immediate corollary of Theorem 1 is that it is appropriate to use the following loss function:

Corollary 1. Suppose that one wishes to maximize economic efficiency while using a loss

function that is independent of an advertiser’s bid. Then the correct loss function from using

a pCTR of q when the actual CTR is p is E[
∫ bq
bp

(bp−A)g(A|b, x) dA], where the expectation

is taken over the distribution of the CPC bidders’ bids.

Throughout the analysis so far we have restricted attention to situations in which the

loss function depends directly on the actual CTR of the ad p. However, in most situations

we will not know the true CTRs of the ads, and it will instead be necessary to define the

loss function exclusively in terms of clicks. We thus illustrate how one can extend the loss

function in Theorem 1 to only depend on whether an advertiser received a click:

Theorem 5. Suppose that one wishes to maximize economic efficiency while using a loss

function that does not depend on the advertisers’ CTRs. Then the correct loss function from

6Nonetheless, the expectation of the empirical loss function is still minimized by using a pCTR equal to the
expected CTR, as noted in Theorem 3. This shows that assumptions of symmetric loss and single-peaked
probability distributions that are used in Granger (1969) are not needed to ensure that making a prediction
equal to the conditional mean is optimal, as the loss function need not be symmetric in this setting.
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using a pCTR of q is
∫ bq
bc

(bc− A)g(A|b, x) dA, where c is a dummy variable that equals 1 if

the CPC ad received a click and 0 otherwise.

This loss function will still have the desirable property mentioned in Theorem 3 that the

magnitude of the expected value of the loss function will be minimized by a pCTR equal to

the actual CTR. For instance, if the true CTR of the ad is p, then one can apply Theorem

3 to the special case in which the distribution F (·) of actual CTRs is a distribution that

assumes the value 1 with probability p and 0 with probability 1 − p, and it immediately

follows from this theorem that the magnitude of the expected value of the loss function in

Theorem 5 will be minimized by a pCTR equal to the actual CTR.

Thus far we have concerned ourselves with designing a loss function to maximize economic

efficiency. While this is a reasonable goal, one might naturally wonder what happens if we

use a loss function that optimizes a weighted average of efficiency and revenue since many

systems may care about both of these metrics. Unfortunately, there are significant problems

with using such a loss function:

Theorem 6. Suppose that one wishes to maximize a weighted average of economic efficiency

and revenue. Then the correct loss function may result in predictions that are not calibrated in

the sense that the magnitude of the expected value of the loss function may not be minimized

by a pCTR equal to the actual CTR.

Since it is quite important to ensure that the loss function is well-calibrated, Theorem 6

indicates that it is not appropriate to choose a loss function that optimizes revenue in addition

to efficiency. Using such a loss function would result in poorly calibrated predictions, so it

is better to simply use a loss function that reflects the efficiency loss from misestimates. We

can further say something about when using a loss function that maximizes revenue would

be optimized by making underpredictions or overpredictions:

Theorem 7. Suppose that one wishes to maximize revenue and G(·|b, x) has bounded support

and is independent of b. Then the correct loss function is optimized by making underpredic-

tions (overpredictions) of CTRs for CPC ads with large (small) bids.
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To understand the intuition behind this result, note that if a bidder makes a small bid,

then it is much more likely that this bidder will be second-pricing the highest competing

eCPM bidder than it is that this bidder will win the auction, so revenue will be optimized by

raising this bidder’s pCTR to increase the highest competing eCPM bidder’s costs. Similarly,

if a bidder makes a large bid, then this bidder is likely to win the auction, so one can increase

revenue by lowering this bidder’s pCTR and increasing the bidder’s click cost.

We end this section with one last remark on our results. Throughout this section we have

analyzed loss functions under standard second-price auctions for a single advertising oppor-

tunity. However, many online ad auctions are position auctions in which several advertising

opportunities on the page are auctioned off at the same time. It is thus natural to ask

whether the possibility of position auctions would have a significant effect on the results.

The appropriate loss functions turn out to be virtually unaffected by the possibility of

position auctions. We show in a working paper (Hummel and McAfee 2015) that the optimal

loss functions for position auctions only differ in that g(A|b, x) is replaced by a weighted sum

of densities corresponding to the distributions of the kth-highest competing bids, where the

weights correspond to the relative CTRs of the various positions. Thus we lose little by

restricting attention to auctions for a single advertising opportunity.

4. Concave Value Functions

The analysis we have done so far indicates that the empirical loss function differs signifi-

cantly from standard loss functions such as LL. Nonetheless, there may still be a disadvantage

to using the empirical loss function. Computationally it is easier to calculate the coefficients

that maximize a concave loss function, and unlike LL, there is no guarantee that the empirical

loss function will be concave. This is illustrated in the following example:

Example 2. The empirical loss function in Theorem 1 is not a concave function in q if the

highest competing bid that an advertiser faces is drawn from a log-normal distribution.

While the empirical loss function need not be concave in q, one can still construct loss

functions that are preferable to standard loss functions even if computational constraints
12



mean that one must use a concave loss function. Practically this is achieved by using a

loss function whose shape is equal to the empirical loss function for values of q where the

empirical loss function is already concave in q but is then linear for values of q near zero

and one where the empirical loss function ceases to be concave. This is illustrated in the

following theorem, where we assume that all the bids are one for expositional simplicity:

Theorem 8. Suppose that one wishes to maximize economic efficiency while using a concave

loss function and the competing bid that an advertiser faces is drawn from a distribution g(·)

such that (p− q)g(q) is increasing in q for values of q near 0 and 1.7 Then the best concave

loss function L(q, p) will have derivative ∂L(q,p)
∂q

that is constant in q for values of q near 0

and 1 and equal to the derivative of the empirical loss function for values of q near p.

Thus while the empirical loss function may no longer be feasible when one wishes to

use a concave loss function, one can still come up with an alternative loss function that is

preferable to standard loss functions. The solution involves coming up with a concave loss

function that is as close as possible to the empirical loss function, while still satisfying the

constraint that the loss function is concave in q. This is depicted in Figure 2, where this

figure depicts the values of the derivative ∂L(q,p)
∂q

for the empirical loss function in black and

the best concave loss function in red. Such a concave approximation to the empirical loss

function would take no more time to optimize than LL.

Theorem 8 addresses the question of how one can construct an optimal loss function that is

as close to the empirical loss function as possible while still satisfying the constraint that the

loss function must be concave in q. While this is an important question, in some applications

concavity of the loss function in q alone is not sufficient for the loss function minimization

to be computationally feasible. Often one wishes to fit a model where the pCTR is a logistic

function or a model where q is of the form q = 1

1+e−
∑m
i=1

βixi
, where each xi is an observed

feature, and each βi is a coefficient on the feature that the model is trying to estimate.

7This condition on g(·) is automatically satisfied if limq→0 g(q) = 0, g(q) is increasing in q for values of q
near 0, and g(q) is decreasing in q at a rate faster than 1

q for values of q near 1, as would surely be the case

in practice. In practical applications, g(·) is typically modeled as a log-normal distribution with a mode near
a typical CTR, and such a distribution would satisfy these conditions.
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Figure 2. If the black curve represents the shape of the derivative of the empirical
loss function with respect to the pCTR, then the red curve represents the shape of
the derivative of the best concave loss function with respect to the pCTR.

If the model is of this form, then in order for it to be computationally feasible to find the

values of the coefficients that minimize the loss function, it is no longer sufficient for the

loss function to be concave in the pCTR. Instead the loss function must be concave in the

coefficients ~β = (β1, . . . , βm). We illustrate the form that the optimal loss function takes

when the loss function must be concave in the coefficients ~β = (β1, . . . , βm) in Theorem 9:

Theorem 9. Suppose that one wishes to maximize economic efficiency while using a loss

function that is concave in the coefficients ~β = (β1, . . . , βm) and fitting a model of the form

q = 1

1+e−
∑m
i=1

βixi
. Then the best concave loss function L(q, p) will have derivative ∂L(q,p)

∂q
=

c
q

+ c
1−q for some constant c for values of q near zero and one (where the constant c may

be different for values of q near zero than it is for values of q near one) and equal to the

derivative of the empirical loss function for values of q near p.

The derivative of the loss function in Theorem 9 is somewhat similar to the derivative of

LL for values of q near zero since ∂L(q,p)
∂q

= p
q
− 1−p

1−q for LL, so these derivatives both vary with

1
q

for values of q near zero. Nonetheless, the magnitude of this derivative may be smaller for
14



the loss function in Theorem 9 since c may be lower than p for values of q near zero, so this

loss function will impose relatively smaller penalties on large mispredictions than LL.

Finally, we analyze the case where the loss functions only depend on whether a click

was observed. To do this, let Lc(q) denote the loss if an ad receives a click, and let Ln(q)

denote the loss if an ad does not receive a click and the pCTR is q. We first derive the

conditions needed to ensure the loss function is concave in the coefficients ~β = (β1, . . . , βm)

and calibrated in that the expected loss is minimized by a pCTR equal to the CTR:

Lemma 1. Suppose that one is fitting a model of the form q = 1

1+e−
∑m
i=1

βixi
and one wishes

to use a calibrated loss function that is concave in the coefficients ~β = (β1, . . . , βm). In

that case the set of feasible loss functions Lc(q) and Ln(q) for the losses that are incurred

under either a click or no click are those satisfying L′c(q) = h(q)
q

and L′n(q) = −h(q)
1−q for some

non-negative function h(q) satisfying −h(q)
q
≤ h′(q) ≤ h(q)

1−q .

For the empirical loss function, the derivative of the loss function with respect to q will be

relatively larger for values of q near the peak of the density corresponding to the distribution

of competing bids. This suggests that it would be best to use a loss function of the form

in Lemma 1 where h(q) is relatively larger for values of q near the peak of this density. We

derive the form of the optimal choice of this function h(q) in Theorem 10 below:

Theorem 10. Suppose that one is fitting a model of the form q = 1

1+e−
∑m
i=1

βixi
and one wishes

to use a well-calibrated loss function that is concave in the coefficients ~β = (β1, . . . , βm).

Then the optimal choice of the function h(q) for the loss functions Lc(q) and Ln(q) satisfying

L′c(q) = h(q)
q

and L′n(q) = −h(q)
1−q is such that h(q) = c1

q
for some constant c1 for values of q

near 1, h(q) = c0
1−q for some constant c0 for values of q near 0, and h(q) = q(1− q)g(q) for

values of q where the derivative of q(1− q)g(q) with respect to q is close to 0.

Theorem 10 verifies that it is indeed desirable to choose a function h(q) for these loss

functions that is relatively larger for values of q near the peak of the density corresponding

to the distribution of competing bids and relatively smaller for values of q far away from

this peak. In particular, if g(q) denotes the density corresponding to the distribution of
15



competing bids, then it is optimal to choose a function h(q) that is as close to q(1− q)g(q)

as possible. For values of q where h(q) = q(1− q)g(q) automatically satisfies the constraints

−h(q)
q
≤ h′(q) ≤ h(q)

1−q that are needed in Lemma 1, one can simply set h(q) = q(1 − q)g(q).

Otherwise, one will want to use a function h(q) that is as close to q(1 − q)g(q) as possible

while still satisfying the constraints −h(q)
q
≤ h′(q) ≤ h(q)

1−q . This entails using a function h(q)

that varies with q at the rate 1
q

for large q and 1
1−q for small q.

5. Simulations Using Misspecified Models

While there are significant differences between the empirical loss function in Theorem 1

and standard loss functions such as LL, it is not clear from the results presented so far

whether these differences would actually have a substantive effect on online ad auctions.

In this section we investigate whether using the correct loss function will have a significant

effect on efficiency in simulations that are designed to closely parallel a real-world auction

environment when the model for pCTRs is misspecified.

Throughout we consider an auction in which a CPC bidder with a CPC bid of 1 is compet-

ing against a field of CPM bidders for a single advertising opportunity. This type of setting

is frequently encountered in online auctions. For example, when AdSense bids on behalf

of Google’s advertisers for display advertising opportunities on an ad exchange, Google’s

advertisers bid nearly exclusively on a CPC basis, whereas the advertisers from other ad

networks all bid on a CPM basis. Similarly, in auctions for advertising opportunities on

YouTube, there is typically a mix of CPC and CPM bidders.

In real-world auctions, an ad’s CTR depends on the context in which it is shown. Adver-

tiser characteristics, publisher characteristics, and user characteristics can all influence the

CTR of an ad. Moreover, the presence of multiple such characteristics can further influence

the probability that an ad receives a click. In a typical machine learning system, these

characteristics are modeled as features xi that assume the value 1 if the feature is present

and 0 otherwise. Moreover, there will be additional features xi,j = xixj that capture these
16



interaction effects arising from multiple characteristics being present at the same time that

may also influence the CTRs of the ads.

We consider a situation in which there are 1000 possible contexts, each of which is equally

likely to occur, and 211 possible features that may influence CTRs. In each of these contexts,

there is one feature x0 that is always present (i.e. x0 = 1 in all contexts). There are also

20 features x1, . . . , x20 which are each present in a given context with probability 1
5

(i.e.

xi = 1 with probability 1
5

and xi = 0 with probability 4
5

in each context independent of the

other features). Finally, the 190 remaining features represent the various possible interaction

terms xi,j that are present if and only if both xi and xj are present (i.e. xi,j = xixj for all

possible distinct pairs of positive integers i and j less than or equal to 20).

Throughout we consider a situation in which the logit of the pCTR is a linear function of

the values of the features. That is, if qc denotes the pCTR for the CPC ad in context c, then

there are some coefficients βk on the various features xk such that logit(qc) =
∑

k βkx
c
k, where

xck denotes the value that the feature xk assumes in context c. This parallels the functional

forms used by many machine learning systems for pCTRs.

We consider two possible models for the true CTRs of the ads. In the first model, the

logit of the true CTR is also a linear function of the values of the features. Under this

model, the only source of misspecification will come from including the wrong features in

the model for pCTRs. In the second model, a scaled probit of the actual CTR is a linear

function of the values of the features. That is, if pc denotes the true probability that the

CPC ad will receive a click in context c, then there are some coefficients βk such that

probit(pc) =
√

π
8

∑
k βkx

c
k, where xck denotes the value that the feature xk assumes in context

c. In this model, misspecification errors may come from both functional form misspecification

as well as from including the wrong features in the model for pCTRs.

The true coefficients on the features are set as follows. To capture the fact that many

features that are present in the real world are features that will not actually have any effect

on the CTRs of the ads, we assume throughout that the true values of some of the coefficients
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are zero. In particular, we assume that a random set of 110 of the 190 features capturing

the interaction terms have true coefficients equal to 0.

The true coefficients on the remaining features are set in such a way that the distribution

of the true CTRs of the ads in the various possible contexts will closely parallel those given in

existing empirical work such as Lahaie and McAfee (2011). For the setting in which the logit

of the true CTR is a linear function of the values of the features, we assume that the true

value of the constant coefficient satisfies β0 = −6 and the true values of the other non-zero

coefficients are independent random draws from the normal distribution with mean 0 and

standard deviation 1. Here the constant coefficient is set to be quite negative to capture the

fact that the average CTRs in online auctions tend to be on the order of 1
100

or even 1
1000

(Bax et al. 2012), while the random draws of the other coefficients ensure that the variance

is comparable to that of distributions of CTRs encountered in existing empirical work.

For the setting in which the probit of the true CTR is a linear function of the values

of the features, we instead assume that the true value of the constant coefficient satisfies

β0 = −4.5 and the true values of the other non-zero coefficients are independent random

draws from the normal distribution with mean 0 and standard deviation 1
2
. The differences

in the coefficients reflect the need to choose different coefficients in order to match empirical

evidence on ad CTRs when the probit of the true CTR is a linear function of the values of the

features rather than a logit. For instance, if p = 0.0024, then probit(p)/
√

π
8

= −4.5 while

logit(p) = −6.0, and if p = 0.000085, then probit(p)/
√

π
8

= −6.0 while logit(p) = −9.4. To

ensure that the actual CTRs of the least frequently clicked ads are not unrealistically small

for the probit model, it is necessary to make the true value of the constant coefficient larger

and induce less variance in the other coefficients.

We seek to illustrate whether fitting the coefficients with the empirical loss function rather

than LL would improve performance when there is an arbitrarily large amount of training

data if the model is misspecified. We address this question in three settings. First we

consider a setting in which the only source of misspecification arises from including the

wrong features in the model for pCTRs. Next we consider a setting in which the only
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source of misspecification is the functional form misspecification arising from the fact that

the probit of the true CTR is a linear function of the values of the features rather than the

logit. Finally, we consider a setting in which both sources of misspecification are present.

In settings where one source of misspecification arises from including the wrong features

in the model, we endogenously generate a misspecified model that could realistically arise

given standard procedures used by machine learning systems. In particular, we first consider

a situation in which we have a finite amount of training data that could be used to fit the

model in the sense that, for each of the 1000 possible contexts, we observe 100 independent

impressions that were either clicked or not clicked. Given these 100, 000 impressions of

training evidence, we then fit a model to optimize LL with L1-regularization. That is, we

choose the coefficients on the features βk to maximize

∑
c

[p̃c log(qc) + (1− p̃c) log(1− qc)]− λ
∑
k

|βk|, (1)

where p̃c denotes the empirically observed frequency with which an ad in context c was

clicked, qc denotes the pCTR for an ad in context c given the coefficients βk, λ ≥ 0 denotes a

regularization term, and βk denotes the value of the coefficient on feature k. This technique

of using L1-regularization to select the features that will be used in the model is one that is

commonly used in machine learning (Koh et al. 2007; Ng 2004; Wainwright et al. 2006) and

is also used by Google in its ad click prediction algorithms (McMahan et al. 2013).

An effect of optimizing LL with L1-regularization is that many of the coefficients βk in

the model will be set to zero. The −λ
∑

k |βk| term in equation (1) is optimized by setting

all the coefficients to be exactly 0, so if the value of βk that would be best for LL is only

slightly different from zero, βk will typically be set to zero as a result of this regularization.

However, given the finite amount of training evidence, the features whose coefficients are set

to zero will not necessarily be the same as the features where the true value of the coefficient

is zero. Instead there will be some features whose true coefficients are zero where the fitted

coefficients are non-zero and some features whose true coefficients are non-zero where the

fitted coefficients are zero.
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A result of this feature selection process is that we will generate a misspecified model in

which the features included in the model are not the same as the features that should be in

the model. Given this endogenously generated misspecified model, we then reestimated the

coefficients in this model using both LL and the empirical loss function with an infinitely

large training sample. We then investigated whether using the empirical loss function rather

than LL improves economic efficiency.

In doing this, we must specify the distribution of competing CPM bids that will be used

to calculate both economic surplus and the appropriate coefficients to optimize the empirical

loss function. Because there is empirical evidence that the distribution of competing bids

can be reasonably well modeled by a log-normal distribution (Lahaie and McAfee 2011;

Ostrovsky and Schwarz 2016; Sun et al. 2014), throughout we consider a situation in which

the highest competing CPM bid is drawn from a log-normal distribution with mean µ and

variance σ2. Moreover, to ensure that the highest competing CPM bid tends to be around

the same order of magnitude as the typical true eCPM of the CPC bidder, we consider a

scenario in which µ = −6 and σ2 = 4.

We begin by presenting the results for the case where the only source of model misspecifica-

tion comes from including the wrong features in the model. Here we considered five different

possible values of λ: 0.05, 0.09, 0.15, 0.25, and 0.35. For each of these possible values of

λ, we conducted a dozen different simulations. In each simulation we randomly generated

the correct values of the true coefficients in the model and then endogenously generated the

misspecified model using the procedure described above. After fitting the coefficients of this

misspecified model using both LL and the best concave approximation to the empirical loss

function with an arbitrarily large training set, we then calculated the efficiencies resulting

from using the model trained by these different objective functions.

Table 1 summarizes the results of our simulations. In analyzing our results, we first

consider the set of simulations we conducted in which the misspecified models were generated

using a value of λ satisfying λ = 0.09. Such a value of λ is one that seems to generate a

realistic amount of misspecification. When λ = 0.09, the number of features that end up
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λ Missing Features Misspecification Errors Changes in Logit(pCTR) Efficiency Increases

0.05
[16, 52]

34
[0.09, 0.43]

0.22
[0.04, 0.10]

0.06
[0.003%, 0.011%]

0.006%

0.09
[14, 37]

30
[0.18, 0.51]

0.33
[0.06, 0.15]

0.10
[0.004%, 0.021%]

0.013%

0.15
[29, 48]

38
[0.14, 0.58]

0.43
[0.06, 0.16]

0.12
[0.004%, 0.036%]

0.022%

0.25
[35, 74]

52
[0.40, 0.96]

0.67
[0.10, 0.30]

0.17
[0.021%, 0.067%]

0.048%

0.35
[51, 74]

61
[0.53, 1.08]

0.83
[0.12, 0.37]

0.20
[0.036%, 0.134%]

0.069%

Table 1. Ranges and mean values of our simulation results when the misspeci-
fication errors come entirely from including the wrong features in the model. The
second column gives the number of features with non-zero coefficients that are not
present in the misspecified model. The third column gives the average difference be-
tween the logit of the pCTR and the logit of the actual CTR in the various contexts
in the model fit using LL. The fourth column gives the average difference between
the logit of the pCTRs in the models fit using the different loss functions. And the
final column gives the efficiency increase from using the empirical loss function.

being included in the model is close to the number of features that actually have an effect on

the CTRs of the ads. However, the model is still misspecified in the sense that, on average,

30 of the 101 features that actually have an effect on the CTR of the ad are not included in

the model, while a similar number of features whose true coefficients are zero are included

in the model. Fitting such a model results in average errors in the pCTRs that range from

anywhere between 20− 50%, which seem in the realm of what is plausible.8

In each of the dozen simulations we conducted using a misspecified model generated with

λ = 0.09, we obtained efficiency gains from using the empirical loss function. However, the

efficiency gains were never greater than 0.021%. Logically it makes sense that these gains

are small. Suppose, for example, that the average error in our pCTRs is roughly 30%. In

this case, using a different loss function should, on average, change our pCTRs by only a

fraction of 30%. And indeed in our simulations, we found that the average change in pCTRs

as a result of using the empirical loss function when λ = 0.09 was only about 10%.

8Hummel and McAfee (2016a) note that the average errors in predicted clicks for new ads are likely to be
in the 20− 30% range. See Appendix B for a discussion of how these error rates can be estimated.
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Now even if we managed to improve the pCTRs by 10% on every single impression, such a

change would likely only increase economic efficiency by a few tenths of a percentage point:

Changing an ad’s pCTR by 10% will only affect whether that ad wins the auction in about

10% of auctions. And conditional on this change affecting whether an ad wins the auction,

the expected efficiency gain will only be about half the size of the change in pCTRs, or about

5%. Thus improving the pCTRs by 10% on every single impression would only result in an

efficiency gain of about 10% of 5% or about half of a percentage point.

But in our setting, we are not improving the pCTRs by 10% on every single impression

by using a different loss function. Instead we are improving the pCTRs by about 10% on

impressions where this is relatively more likely to have an effect on which ad wins the auction,

while making our pCTRs less accurate in other cases where this is relatively less likely to

have an effect on which ad wins the auction. The benefits to this are likely to be an order

of magnitude smaller than the benefits to making the pCTRs more accurate on every single

impression, so it is no surprise that the efficiency gains from using the empirical loss function

are only a few hundredths, rather than a few tenths, of a percentage point.

Doing more regularization by using larger values of λ in equation (1) generally results in

models with a smaller number of features and a larger misspecification error.9 In cases where

we have greater misspecification error, we find that there is relatively more benefit to using

the empirical loss function. Figure 3 plots the realized efficiency gain as a function of the

average error in the pCTRs. From this figure, it is clear that there is greater benefit to using

the empirical loss function when the model is more severely misspecified. However, this

figure also indicates that even when a model is severely misspecified, the gains from using

the empirical loss function are still not very large. Even though our simulations include cases

9These models also reduce the number of features in the model that should not be included in the model.
However, since the models are being trained with an arbitrarily large amount of data, all the models consid-
ered in these simulations are effectively underfitted, and reducing the number of features in the model tends
to reduce accuracy. In practice there may be benefits to using an underfitted model, even if using such a
model comes at a slight cost in accuracy, since larger models require more computing resources and are thus
more costly to deploy. Thus overfitting is also relatively less likely to be an issue in practice. See McMahan et
al. (2013) for techniques Google employed to achieve memory savings in deploying machine learning models
for predicting ad CTRs and Shamir (2015) for novel regularization techniques that can achieve significant
reductions in model size at little cost in accuracy.
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Figure 3. Percentage efficiency increase from using empirical loss function as a
function of the average error in logit(pCTR).

in which the average error in the pCTRs is over 100%, the efficiency gains from using the

empirical loss function were never greater than 0.14%.10

The above results were for the case in which the only source of model misspecification

came from including the wrong features in the model of pCTRs, but we also found similar

substantive conclusions for the case in which there was functional form misspecification. For

our simulations in which the probit of the true CTR was a linear function of the values of

the features, we considered several possible settings.

In the first setting, we assumed that the features in the model were the same as the features

that actually had non-zero coefficients in the true function giving the actual CTRs of the ads.

10It is also worth noting that while adopting the empirical loss function always resulted in an increase in
efficiency, use of this alternative loss function gives no guarantee of increasing revenue. For example, for seven
of the twelve simulations in Table 1 with λ = 0.05, revenue declined as a result of adopting the empirical
loss function. The average revenue change in this case was −0.01% with a range of [−0.40%, 0.71%]. In
fact, even making the predicted click-through rates more accurate in every single auction would not have a
guarantee of increasing revenue (Fu et al. 2012; Hummel and McAfee 2016b).
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In the second setting, we followed the same procedure given above to select features using

L1-regularization and thereby generate a misspecified model in which the features included in

the model are not the same as the features that should be in the model. Here we considered

four different possible values of the regularization parameter λ: 0.03, 0.06, 0.09, and 0.12.

For each of these values of λ, we conducted a dozen different simulations using the same

procedure described above. Smaller values of λ were selected because the fact that the true

coefficients in the model were typically smaller meant that less regularization was needed to

generate a given amount of model misspecification.

The results of these simulations are summarized in Table 2. Table 2 again reveals little gain

in economic efficiency as a result of using the concave approximation to the empirical loss

function rather than LL to fit the model of pCTRs. In fact, if anything, the gains in economic

efficiency from using the concave approximation to the empirical loss function appear to be

even smaller for these simulations. Although these simulations also include examples in which

the average error in the pCTRs is over 100%, the efficiency gains from using the empirical loss

function in these simulations were never greater than 0.05%. Interestingly, these simulations

also noted considerably lower correlation between the size of the misspecification errors and

the economic efficiency gains resulting from using an economically motivated loss function.

λ Missing Features Misspecification Errors Changes in Logit(pCTR) Efficiency Increases

N/A N/A
[0.20, 0.63]

0.44
[0.02, 0.22]

0.11
[0.001%, 0.042%]

0.018%

0.03
[14, 30]

24
[0.39, 0.59]

0.50
[0.05, 0.15]

0.10
[0.005%, 0.024%]

0.014%

0.06
[32, 53]

39
[0.45, 0.79]

0.60
[0.06, 0.18]

0.11
[0.009%, 0.041%]

0.021%

0.09
[29, 50]

41
[0.56, 0.79]

0.66
[0.07, 0.22]

0.13
[0.007%, 0.046%]

0.027%

0.12
[34, 82]

54
[0.52, 1.59]

0.84
[0.05, 0.18]

0.13
[0.003%, 0.048%]

0.029%

Table 2. Ranges and mean values of our simulation results for simulations in
which the model contained functional form misspecification. The first row reports
simulation results when the functional form misspecification was the sole source of
model misspecification and the remaining rows consider cases in which additional
model misspecification arose from including the wrong features in the model for
different values of λ. The meanings of the columns are the same as in Table 1.
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6. Experimental Results

In this section we sought to experimentally verify whether making use of the empirical loss

function would have a significant effect on efficiency in online ad auctions via experiments

on Google’s AdSense product. To do this, we trained two separate models of predicted

click-through rates. The first model was trained to optimize LL, as is standard in machine

learning. The second model was trained to optimize the empirical loss function by estimating

the overall distribution of eCPM bids G(·) on AdSense and using this estimated distribution

to calculate the empirical loss function. Throughout we made use of an approximation to

the empirical loss function based on Corollary 1 that does not depend on an advertiser’s bids

to ensure that no advertiser could attempt to manipulate its pCTR by changing its bid. The

amount of regularization in the model trained to optimize the empirical loss function was

chosen in such a way to ensure that the models trained to optimize LL and the empirical

loss function would have similar numbers of features.

To analyze whether making use of the empirical loss function had a significant effect,

we considered two separate metrics. First we measured the average difference between the

logit of the pCTRs of the models trained to optimize the different loss functions. Here we

found that the average change in logit(pCTR) that resulted from using the model trained

to optimize the empirical loss function was 0.12. This average change is broadly consistent

with the typical simulation results in Table 2, and thus suggests that the typical efficiency

gains may be similar to those in the simulations in Table 2.

In addition to measuring how much the pCTRs changed by using the empirical loss func-

tion, we then conducted an experiment in which we used our newly trained pCTR model

to serve traffic on AdSense. We randomly split traffic on AdSense into a control group and

an experimental group. In the control group, we made use of a standard pCTR model that

was trained to optimize LL in deciding which ads to display. In the experimental group, we

instead made use of the model that was trained to optimize the empirical loss function. We

then compared revenue and efficiency that resulted from using a model trained to optimize

the empirical loss function rather than LL. Since AdSense makes use of a VCG auction in
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which bidders have an incentive to make bids equal to their true values, we assumed the

advertisers’ values per click were equal to their bids in computing efficiency.

In the experiment we measured a revenue change of −0.01% (with a 95% confidence in-

terval of [−0.18%, 0.17%]) and an efficiency change of 0.03% (with a 95% confidence interval

of [−0.56%, 0.61%]) as a result of using a model trained to optimize the empirical loss func-

tion. These results are consistent with the simulation results in Section 5 since the estimated

efficiency gains in these simulations all fall within the confidence intervals given in this ex-

periment. However, the experiment does not establish the exact amount of benefit to using

the empirical loss function since improvements of the size given in the simulations in Section

5 are typically undetectable in such an experiment.11

7. Conclusion

This paper has considered the question of the choice of loss function for pCTRs in auctions

for online advertising. We have shown that a loss function reflecting the true empirical loss

from making inaccurate predictions would impose significant penalties for small mispredic-

tions while imposing only slightly larger penalties on large mispredictions. This is in stark

contrast to standard loss functions such as MSE and LL.

Our analysis has also delivered a number of other insights. We have illustrated that

the empirical loss function may depend on the bids of the advertisers in such a way that

underpredictions of CTRs are more severely penalized than overpredictions for advertisers

with large bids, while overpredictions are more severely penalized for advertisers with small

bids. We have also shown that the best loss function for maximizing economic efficiency will

lead to calibrated predictions, while loss functions chosen to optimize revenue will not.

We have also considered the question of the optimal loss function when one is restricted to

using a concave loss function for reasons of computational tractability. When one must use

11For instance, the average efficiency increases in each of the settings considered in Table 2 are less than
0.03%, while the half-widths in the confidence intervals in the above experiment are roughly±0.6%. To obtain
confidence intervals with half-widths of ±0.03% would thus require reducing these confidence intervals by a
factor of 20, which would in turn require over 400 times as much traffic. Since this far exceeds the amount
of traffic we would be able to use for this experiment, we cannot detect improvements of the size in Table 2
in a live traffic experiment.
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a concave loss function, it may no longer be feasible to use the true empirical loss function.

However, we have shown how one can still improve on standard loss functions by adopting a

loss function that is equal to the true empirical loss function in regions where the empirical

loss function is concave, while coming as close to the empirical loss function as possible

without violating concavity in regions where the empirical loss function is not concave.

Finally, we have addressed the question of whether using the empirical loss function rather

than standard loss functions would improve performance in online auctions if the pCTR

model is misspecified. In the simulations we conducted, we were consistently able to improve

economic efficiency by using the empirical loss function, but the size of the improvement was

small. Our most realistic simulations never revealed efficiency gains greater than a few

hundredths of a percentage point, and even with a large amount of model misspecification,

we never obtained gains significantly greater than a tenth of a percentage point.
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Web Appendices: Not for Publication

Appendx A: Proofs of Theorems

Proof of Theorem 2: The derivative of the empirical loss function with respect to q is

b2(p − q)g(bq|b, x). If limA→0 g(A|b, x) = 0 and limA→b g(A|b, x) = 0, then this derivative

goes to zero in the limit as q → 0 or q → 1. Now the derivative of (q − p)2 with respect

to q is 2(q − p), which is increasing in the distance from q to p. And the derivative of

p log(q)+(1−p) log(1−q) with respect to q is p
q
− 1−p

1−q . This derivative is decreasing in q and

equal to zero when q = p, so the magnitude of this derivative is increasing in the distance

from q to p both for values of q < p and for values of q > p. The result follows. �

Proof of Theorem 3: Note that the pCTR q should be chosen to optimize the value of the

expression E[
∫ bq
bp

(bp−A)g(A|b, x) dA], where the expectation is taken over the uncertain real-

ization of p. Differentiating this expression with respect to q then gives E[b2(p−q)g(bq|b, x)],

which equals zero if and only if q = E[p]. Thus the magnitude of the expected empirical loss

function is minimized by a pCTR equal to the expected CTR. �

Proof of Theorem 4: If g(·) ≡ g(·|b, x) is single-peaked at some eCPM bid Â and bp > Â,

then g(bp − ε) > g(bp + ε) for small values of ε > 0, so |(bp − A)g(A)| is greater when

A = b(p − ε) than when A = b(p + ε) for small values of ε > 0. From this it follows

that |
∫ bq
bp

(bp − A)g(A) dA| is larger when q = p − ε than when q = p + ε for all small

values of ε > 0, and the empirical loss function imposes stricter penalties for making small

underpredictions than for making small overpredictions if bp > Â. A similar argument proves

that the empirical loss function imposes stricter penalties for making small overpredictions

than for making small underpredictions if bp < Â. �

Proof of Theorem 5: The total surplus that results from using a pCTR of q is bcPr(bq ≥

A) + APr(bq < A) =
∫∞
bq
A g(A|b, x) dA +

∫ bq
0
bc g(A|b, x) dA. And the total surplus that

results from correctly predicting whether an ad will receive a click in any given auction is∫∞
bc
A g(A|b, x) dA+

∫ bc
0
bc g(A|b, x) dA. From this it follows that the loss in efficiency that

1



results from using a pCTR of q rather than correctly predicting whether the ad will receive a

click is
∫∞
bq
A g(A|b, x) dA+

∫ bq
0
bc g(A|b, x) dA− [

∫∞
bc
A g(A|b, x) dA+

∫ bc
0
bc g(A|b, x) dA] =∫ bq

bc
(bc− A)g(A|b, x) dA. The result then follows. �

Proof of Theorem 6: To prove this result, it suffices to show that the loss function that

reflects the expected revenue loss from using a pCTR of q when this ad’s actual CTR is p

may result in predictions that are not calibrated. Suppose the only two ads in the system

are the CPC bidder and the highest competing eCPM bid, which is a CPM bid. In this case,

if bq ≥ A, then the CPC bidder wins the auction and makes an expected payment of pA
q

.

But if bq < A, then the competing bidder wins the auction and makes a payment of bq.

Thus the expected revenue from using a pCTR of q when the actual CTR is p is p
q

∫ bq
0
A g(A|b, x) dA+

bq(1 − G(bq|b, x)), and the loss function that reflects the expected revenue loss from using

such a pCTR is p
q

∫ bq
0
A g(A|b, x) dA + bq(1 − G(bq|b, x)) − [

∫ bp
0
A g(A|b, x) dA + bp(1 −

G(bp|b, x))]. Differentiating this loss function with respect to q gives − p
q2

∫ bq
0
A g(A|b, x) dA+

b2p g(bq|b, x) + b(1 − G(bq|b, x)) − b2q g(bq|b, x), and in the case where G(·|b, x) represents

the uniform distribution on [0, 1] for all b, this derivative reduces to − p
q2

∫ bq
0
A dA + b2p +

b(1− bq)− b2q = b2p
2
− 2b2q + b, meaning the derivative is zero when q = p

4
+ 1

2b
.

But this example indicates that it is possible for the loss function to be minimized at a

prediction q 6= p. The result then follows. �

Proof of Theorem 7: We know from the proof of Theorem 6 that the derivative of the

loss function with respect to q is − p
q2

∫ bq
0
A g(A) dA + b2p g(bq) + b(1 − G(bq)) − b2q g(bq)

when G(·) ≡ G(·|b, x) and g(·) ≡ g(·|b, x), meaning this derivative is −1
p

∫ bp
0
A g(A) dA +

b2p g(bp) + b(1 − G(bp)) − b2p g(bp) = b(1 − G(bp)) − 1
p

∫ bp
0
A g(A) dA when q = p. Note

that in the limit as b → 0, the term −1
p

∫ bp
0
A g(A) dA is O(b2) and the term b(1 − G(bp))

is Θ(b), so this derivative is positive for small values of b. From this it follows that the loss

function is optimized by making overpredictions of CTRs for CPC ads with small bids.

Similarly, in the limit as bp approaches the upper bound of the support of G(·), b(1−G(bp))

approaches 0 and 1
p

∫ bp
0
A g(A) dA approaches E[A]

p
. Thus in the limit as bp approaches the

2



upper bound of the support of G(·), the derivative b(1−G(bp))− 1
p

∫ bp
0
A g(A) dA becomes

negative. From this it follows that the loss function is optimized by making underpredictions

of CTRs for CPC ads with large bids. The result then follows. �

Proof of Example 2: Differentiating the loss function in Theorem 1 with respect to q

gives b2(p − q)g(bq|b, x), so the second derivative of this loss function with respect to q is

b2[b(p − q)g′(bq|b, x) − g(bq|b, x)]. Thus the empirical loss function is a concave function if

and only if b(p− q)g′(bq|b, x)− g(bq|b, x) ≤ 0, which holds if and only if b(p− q) ≤ g(bq|b,x)
g′(bq|b,x) .

But this expression will generally fail to hold for log-normal distributions in the limit as

q → 0. From this it follows that the empirical loss function is not a concave function in q if

the highest competing bid is drawn from a log-normal distribution. �

Proof of Theorem 8: If one uses the loss function L(q, p), then this loss function will result

in some distribution of pCTRs given the actual CTRs which we can model by the cumulative

distribution function F (q|p). The machine learning system will select a distribution F (q|p)

amongst the set of feasible distributions that minimizes the magnitude of the expected

loss. Now if H(p) denotes the distribution of actual values of p in the population, this

means that the machine learning system selects the distribution F (q|p) amongst the set

of feasible distributions that maximizes
∫ 1

0

∫ 1

0
L(q, p) dF (q|p) dH(p) =

∫ 1

0

∫ 1

0
∂L(q,p)
∂q

(1 −

F (q|p)) dq dH(p).

Now if one minimizes the magnitude of the empirical loss function, then ∂L(q,p)
∂q

= (p −

q)g(q), and the machine learning system selects the distribution F (q|p) amongst the set of

feasible distributions that maximizes
∫ 1

0

∫ 1

0
(p − q)g(q)(1 − F (q|p)) dq dH(p). Thus if one

wishes to use a loss function that maximizes efficiency subject to the constraint that the loss

function must be concave, then one should use a loss function L(q, p) such that L(q, p) is

concave in q while ∂L(q,p)
∂q

is as close as possible to (p− q)g(q).

Now for values of q that are close to p, (p − q)g(q) is necessarily decreasing in q, so

the empirical loss function is concave in q for values of q near p. Thus the best concave

loss function L(q, p) will simply have derivative ∂L(q,p)
∂q

that is equal to the derivative of the
3



empirical loss function for values of q near p. And for values of q that are close to zero or one,

(p − q)g(q) is increasing in q, so the best concave loss function will instead have derivative

∂L(q,p)
∂q

that is as close to (p− q)g(q) as possible while still being nonincreasing in q, meaning

∂L(q,p)
∂q

will be constant in q. The result then follows. �

Proof of Theorem 9: Note that if we are fitting a model where q is of the form q =

1

1+e−
∑m
i=1

βixi
, then the loss function will be concave in the coefficients ~β = (β1, . . . , βm) if and

only if the loss function is concave in β when we are fitting a model of the form q = 1
1+Ce−βx

for all constants C. Thus in deriving the optimal loss function subject to the constraint

that the loss function is concave in the coefficients ~β = (β1, . . . , βm), it suffices to derive the

optimal loss function subject to the constraint that the loss function is concave in β when

q = 1
1+Ce−βx

.

Now when q = 1
1+Ce−βx

, we have ∂q
∂β

= Cxe−βx

(1+Ce−βx)2
= xq(1 − q), and we also have ∂2q

∂β2 =

−Cx2e−βx(1+Ce−βx)2+2C2x2(1+Ce−βx)(e−βx)2

(1+Ce−βx)4
= Cx2e−βx(2Ce−βx−(1+Ce−βx))

(1+Ce−βx)3
= Cx2e−βx(Ce−βx−1)

(1+Ce−βx)3
= x2q(1−

q)(1 − 2q). From this it follows that ∂2L(q,p)
∂β2 = ∂2L(q,p)

∂q2
( ∂q
∂β

)2 + ∂L(q,p)
∂q

∂2q
∂β2 = ∂2L(q,p)

∂q2
x2q2(1 −

q)2+ ∂L(q,p)
∂q

x2q(1−q)(1−2q). This in turn implies that ∂2L(q,p)
∂β2 ≤ 0 if and only if ∂2L(q,p)

∂q2
q(1−

q) + ∂L(q,p)
∂q

(1− 2q) ≤ 0.

Now we know by the reasoning in the proof of Theorem 8 that if one wishes to use a loss

function that maximizes efficiency subject to the constraint that the loss function must be

concave in the coefficients, then one should use a loss function L(q, p) such that L(q, p) is

concave in its coefficients while ∂L(q,p)
∂q

is as close as possible to (p− q)g(q). From the results

in the previous paragraph, it follows that this is equivalent to using a loss function L(q, p)

such that ∂2L(q,p)
∂q2

q(1− q) + ∂L(q,p)
∂q

(1−2q) ≤ 0 and ∂L(q,p)
∂q

is as close as possible to (p− q)g(q).

Now for values of q that are close to p, if ∂L(q,p)
∂q

= (p − q)g(q), then L(q, p) necessarily

satisfies the constraint ∂2L(q,p)
∂q2

q(1 − q) + ∂L(q,p)
∂q

(1 − 2q) ≤ 0, so the empirical loss function

is concave in its coefficients for values of q near p. Thus the best loss function L(q, p)

that is concave in its coefficients will simply have derivative ∂L(q,p)
∂q

that is equal to the

derivative of the empirical loss function for values of q near p. And for values of q that

are close to zero or one, if ∂L(q,p)
∂q

= (p − q)g(q), then L(q, p) will not satisfy the constraint
4



∂2L(q,p)
∂q2

q(1 − q) + ∂L(q,p)
∂q

(1 − 2q) ≤ 0, so the best loss function L(q, p) that is concave in its

coefficients will instead have derivative that is as close to (p − q)g(q) as possible while still

satisfying the constraint ∂2L(q,p)
∂q2

q(1− q) + ∂L(q,p)
∂q

(1− 2q) ≤ 0.

Now the above objective is achieved by choosing a loss function L(q, p) that satisfies

∂2L(q,p)
∂q2

q(1− q) + ∂L(q,p)
∂q

(1− 2q) = 0 for values of q near zero and one. This is equivalent to

choosing a loss function L(q, p) that satisfies ∂
∂q

[∂L(q,p)
∂q

q(1−q)] = 0, meaning the loss function

L(q, p) satisfies ∂L(q,p)
∂q

q(1−q) = c for some constant c for values of q near zero and one. Thus

the best concave loss function L(q, p) will simply have derivative ∂L(q,p)
∂q

= c
q(1−q) = c

q
+ c

1−q

for values of q near zero and one (where the constant c may be different for values of q near

zero than it is for values of q near one). The result then follows. �

Proof of Lemma 1: In order for a loss function to be well-calibrated it must be the case

that qL′c(q)+(1−q)L′n(q) = 0 for all q. Thus if we let fc(q) ≡ L′c(q) and we let fn(q) ≡ L′n(q),

then it must be the case that qfc(q) + (1− q)fn(q) = 0 for all q, meaning fc(q) = −1−q
q
fn(q)

and f ′c(q) = fn(q)
q2
− 1−q

q
f ′n(q).

Now in order for the loss functions Lc(q) and Ln(q) to be concave in the coefficients ~β =

(β1, . . . , βm), we know from the reasoning in the proof of Theorem 9 that it must be the case

that q(1−q)L′′c (q)+(1−2q)L′c(q) ≤ 0 and q(1−q)L′′n(q)+(1−2q)L′n(q) ≤ 0. Thus if fc(q) =

L′c(q) and fn(q) = L′n(q), then it also must be the case that q(1−q)f ′c(q)+(1−2q)fc(q) ≤ 0 and

q(1− q)f ′n(q) + (1− 2q)fn(q) ≤ 0. And since fc(q) = −1−q
q
fn(q) and f ′c(q) = fn(q)

q2
− 1−q

q
f ′n(q),

the first of these inequalities is equivalent to q(1− q)[fn(q)
q2
− 1−q

q
f ′n(q)]− (1−2q)(1−q)

q
fn(q) ≤ 0,

which is in turn equivalent to 2fn(q)− (1− q)f ′n(q) ≤ 0.

Now q(1−q)f ′n(q)+(1−2q)fn(q) ≤ 0 holds if and only if q(1−q)f ′n(q)+(1−2q)fn(q) = −a(q)

for some nonnegative function a(q). This in turn holds if and only if d
dq

[q(1−q)fn(q)] = −a(q),

which then holds if and only if q(1 − q)fn(q) = −b(q) for some non-negative and non-

decreasing function b(q). From this it follows that fn(q) must be of the form fn(q) = − b(q)
q(1−q)

for some non-negative and non-decreasing function b(q).
5



Now if fn(q) = − b(q)
q(1−q) , then f ′n(q) = − q(1−q)b′(q)−(1−2q)b(q)

(q(1−q))2 = − b′(q)
q(1−q) + (1−2q)b(q)

q2(1−q)2 . From this

it follows that 2fn(q)−(1−q)f ′n(q) ≤ 0 holds if and only if − 2b(q)
q(1−q)+

b′(q)
q
− (1−2q)b(q)

q2(1−q) ≤ 0, which

in turn holds if and only if −2qb(q)+q(1−q)b′(q)−(1−2q)b(q) ≤ 0⇔ q(1−q)b′(q)−b(q) ≤ 0.

Now let h(q) ≡ b(q)
q

so that b(q) = qh(q). In this case, b′(q) = h(q) + qh′(q), so the

condition q(1− q)b′(q)− b(q) ≤ 0 reduces to q(1− q)h(q) + q2(1− q)h′(q)− qh(q) ≤ 0, which

is in turn equivalent to −h(q) + (1− q)h′(q) ≤ 0 or h′(q) ≤ h(q)
1−q . At the same time, since b(q)

is non-decreasing in q, we know that b′(q) ≥ 0, so the condition that b′(q) = h(q) + qh′(q)

implies that h(q) + qh′(q) ≥ 0, meaning h′(q) ≥ −h(q)
q

.

Now since fn(q) = − b(q)
q(1−q) , fc(q) = −1−q

q
fn(q), and h(q) = b(q)

q
, it follows that fn(q) =

−h(q)
1−q and fc(q) = h(q)

q
. And we have seen that if fn(q) = − b(q)

q(1−q) , fc(q) = −1−q
q
fn(q), and

h(q) = b(q)
q

, then the loss functions will be concave in the coefficients ~β = (β1, . . . , βn) if and

only if h′(q) ≥ −h(q)
q

and h′(q) ≤ h(q)
1−q . By combining all the above analysis, we see that

the set of feasible loss functions Lc(q) and Ln(q) for the losses that are incurred when one

records a click or does not record a click are those satisfying L′c(q) = h(q)
q

and L′n(q) = −h(q)
1−q

for some non-negative function h(q) satisfying −h(q)
q
≤ h′(q) ≤ h(q)

1−q . �

Proof of Theorem 10: We know from the reasoning in the proof of Theorem 8 that

if L(q, p) denotes the expected loss that one incurs as a result of predicting that the click-

through rate of an ad is q when the actual click-through rate of the ad is p, and one wishes to

use a loss function that maximizes efficiency subject to the constraints given in the statement

of Theorem 10, then one should use a loss function such that ∂L(q,p)
∂q

is as close as possible to

(p − q)g(q) while satisfying these constraints. Now if p represents the actual click-through

rate of an ad while q represents the predicted click-through rate of an ad, then the derivative

of the expected loss that one incurs as a result of predicting a click-through rate of q with

respect to q, ∂L(q,p)
∂q

, is pL′c(q) + (1− p)L′n(q) = ph(q)
q
− (1−p)h(q)

1−q . Thus if one predicts a click-

through rate q that is some fraction α of the true click-through rate p, then this derivative

will be equal to h(αp)
α
− (1−p)h(αp)

1−αp = [1−αp−α(1−p)]h(αp)
α(1−αp) = (1−α)h(αp)

α(1−αp) when q = αp.

Now when q = αp, we know that (p − q)g(q) = (1 − α)pg(αp). Thus (1−α)h(αp)
α(1−αp) = (1 −

α)pg(αp) whenever h(αp) = αp(1 − αp)g(αp), which holds whenever h(q) = q(1 − q)g(q).
6



For values of q where the derivative of q(1 − q)g(q) with respect to q is close to zero, the

condition −h(q)
q
≤ h′(q) ≤ h(q)

1−q that is necessary and sufficient for the loss functions Lc(q)

and Ln(q) to satisfy the desired properties will automatically hold when h(q) = q(1− q)g(q),

so it will be optimal to set h(q) = q(1− q)g(q) for such values of q.

And for values of q that are near zero and one, the condition −h(q)
q
≤ h′(q) ≤ h(q)

1−q that is

necessary and sufficient for the loss functions Lc(q) and Ln(q) to satisfy the desired properties

will not be satisfied. When h(q) = q(1− q)g(q), we have h′(q) = (1− 2q)g(q) + q(1− q)g′(q),

so −h(q)
q
≤ h′(q) ≤ h(q)

1−q holds if and only if −(1−q)g(q) ≤ (1−2q)g(q)+q(1−q)g′(q) ≤ qg(q),

which in turn holds if and only if (3q − 2)g(q) ≤ q(1− q)g′(q) ≤ (3q − 1)g(q). For values of

q near zero and one, this will not be satisfied since q(1 − q)g′(q) = 0 when q is 0 or 1, but

(3q − 1)g(q) is negative for values of q near 0 and (3q − 2)g(q) is positive when q is near 1.

Thus for values of q near zero and one, the optimal choice of the function h(q) for the loss

functions Lc(q) and Ln(q) satisfying L′c(q) = h(q)
q

and L′n(q) = −h(q)
1−q will be such that h(q) is

as close to q(1− q)g(q) as possible while still satisfying the conditions −h(q)
q
≤ h′(q) ≤ h(q)

1−q .

For values of q near zero this entails using a function h(q) that satisfies h′(q) = h(q)
1−q , meaning

h(q) will be of the form h(q) = c0
1−q for some constant c0 for values of q near zero. And for

values of q near one this entails using a function h(q) that satisfies h′(q) = −h(q)
q

, meaning

h(q) will be of the form h(q) = c1
q

for some constant c1 for values of q near one. The result

then follows. �

7



Appendx B: Estimating Average Errors in Predicted Click-Through Rates

This section describes techniques that could be used to estimate the average errors in

predicted click-through rates. While it is not possible to ever identify the average errors in

a model’s predicted click-through rates on an impression by impression basis, it is possible

to estimate the average error in the predicted number of clicks that an advertiser receives

over many impressions. We illustrate these points in this appendix.

First we explain why it is not possible to precisely identify the true average errors in a

model’s predicted click-through rates on an impression by impression basis. To see this,

suppose we are in a setting in which, on average, half of impressions are clicked and we make

use of a model that always predicts a probability of a click equal to 1
2
. Here there are at

least two possibilities that will be consistent with the data that we have observed.

One possibility is that the true probability of a click on every single impression is 1
2
. In

this case, the average error in our machine learning system is 0. But another possibility is

that there is some feature which we do not observe that is present in a random half of the

auctions such that the probability of a click is 1 if the feature is present and 0 otherwise.

In this case, the average error in our predicted click-through rates is substantial. Since

both of these possibilities are consistent with the data, one cannot identify the true average

errors in a model’s predicted click-through rates on an impression by impression basis in this

example. And more generally, since the true probabilities of a click on any given impression

are unobserved, it is not possible to identify the true average errors in a model’s predicted

click-through rates on an impression by impression basis.

But it is possible to estimate the average error in the advertisers’ predicted numbers of

clicks over many impressions. To see this, let c denote the actual number of clicks that an

advertiser has received, let q denote the number of clicks that the advertiser was predicted

to receive, and let p denote the advertiser’s true expected number of clicks given the true

underlying probabilities with which each of the impressions are clicked. If an advertiser has

received many impressions, then given the actual value of p, c will be a random variable that

can be reasonably modeled as a draw from a Poisson distribution with parameter p. Thus
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E[c|p] = p and V ar[c|p] = E[(c − p)2] = p. Also, if q is an unbiased estimate of p, then

E[q − p] = 0.

To estimate the average error in the advertisers’ predicted number of clicks, we wish to

estimate the value of E[(p − q)2], where the expectation is taken over different advertisers.

Note that E[(c− q)2] = E[(c−p+p− q)2] = E[(c−p)2]+2E[(c−p)(p− q)]+E[(p− q)2] and

E[(c− p)(p− q)] = 0 since E[c− p] = 0 and c− p is a random variable that is uncorrelated

with the random variable p− q (because conditional on p, the actual number of clicks an ad

receives is uncorrelated with the prediction errors made by the machine learning system).

Thus this expression for E[(c−q)2] simplifies to E[(c−q)2] = E[(c−p)2]+E[(p−q)2], which

in turn implies that E[(p−q)2] = E[(c−q)2]−E[(c−p)2] = E[(c−q)2]−E[p] = E[(c−q)2−p].

Now for any given advertiser, we observe the value of (c − q)2 because we observe this

advertiser’s actual number of clicks c and the advertiser’s predicted number of clicks q. We

also observe an unbiased estimate of p because an advertiser’s actual number of clicks c is an

unbiased estimate of p. Thus we can compute an unbiased estimate of (c−q)2−p for any given

advertiser, which we can in turn use to estimate the value of E[(p− q)2] = E[(c− q)2− p] by

averaging over a large number of advertisers. By doing this, we can reasonably approximate

the average percentage errors in the advertisers’ predicted number of clicks.

These average percentage errors will differ for different buckets of advertisers, as there

will be smaller percentage errors in the predicted number of clicks for advertisers with larger

amounts of data. We believe it is plausible that the percentage errors in predicted click-

through rates on an impression by impression basis would be comparable to the estimated

percentage errors in predictions of the total number of clicks for new ads. While the pre-

diction errors for new ads are larger than the prediction errors for other ads, it is also more

difficult to predict click-through rates on an impression by impression basis than it is to

estimate the average number of clicks for an ad over many impressions. Thus it is not clear

whether the true average percentage errors in predicted click-through rates are greater or

lower than the average errors in predictions of the total number of clicks for new ads. The

estimates given in footnote 8 thus seem like a reasonable point to analyze.
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