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ABSTRACT. We address the question of how a monopolist should price when facing evolu-
tionary consumers who gradually move in the direction of following their optimal strategy
but may make temporary suboptimal choices. We show that under a broad generalization
of the most commonly used model of evolution, the monopolist will set a path of prices such
that all consumers eventually stop purchasing the monopolist’s product.
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1. INTRODUCTION

While a standard rationalist paradigm assumes that individuals optimize instantaneously,
the assumption of full rationality on the part of economic agents has been widely questioned
in the literature (see Camerer et al. 2004 for an extensive collection of essays related to this).
For most people, optimizing is costly, and even with good intentions, mistakes are made.
Many people are not on the optimal cell phone plan given their usage, use credit cards with
dominated terms (Ausubel 1991), and don’t save enough for retirement (Bernheim et al.
2001). Product adoptions often follow an “S-shaped” pattern, reflecting a period in which
the adoption rate increases as awareness increases, followed by a diminishing rate as the set

of people available to adopt dwindle.
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The fact that the assumption of full rationality may not be satisfied has prompted an exam-
ination of alternative models. Evolutionary models have been a particularly popular choice,
as they provide a compelling framework for understanding how people actually behave.
These models typically have the property that individual decisions are eventually optimal,
and in a static environment, improve over time. Evolutionary models have been extensively
studied as a model of game play since Maynard Smith and Price (1973) introduced the con-
cept of evolutionarily stable strategies, and the literature is generally supportive of their use
in modeling game play. For instance, evolutionary models have been applied to a wide range
of problems such as crime (Cressman et al. 1998), firm market shares (Mazzucato 1998),
industrial dynamics (Klarl 2008), livestock management (Gramig and Horan 2011), portfolio
selection (Bomze 2000), the prisoner’s dilemma (Epstein 1999), public goods (Brandt et al.
2006), technological innovation (Windrum 1999), tourism (Accinelli et al. 2009), and value
chains (Cantner et al. 2016).

As noted in Weibull (1998a), the most widely used model of evolution in the literature is
the replicator dynamics, which was first developed by Taylor and Jonker (1978).2 Under the
replicator dynamics, the rate at which the fraction of players who employ a particular strat-
egy changes is directly proportional to the difference between the average payoff obtained
by players who employ that strategy and the average payoff of all the players. Such evolu-
tionary models based on the replicator dynamics have been used successfully in a myriad of

applications in the literature. Not only is there an extensive economics literature based on

2Cressman and Tao (2014) also note that “the replicator equation is the first and most important game

dynamics studied in connection with evolutionary game theory.”
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such models,® but these models have also been used extensively in biology* as well as dozens
of other scientific disciplines.” Frequently the behavior of firms is modeled this way (e.g.
Cantner et al. 2016; Klarl 2008; Mazzucato 1998), but the replicator dynamics could also
be applied to consumers.

We will ask a practical question: how should a monopolist price when facing such evo-
lutionary consumers? A monopolist faces a tradeoff: an increased price today will result
in greater immediate revenues, but at a cost of consumers leaving the service at a faster
rate. The evolutionary framework is attractive because it both accords well with how real
consumers appear to behave, and because that behavior — temporary suboptimal choices —
seems to accord well with how some managers think about their pricing decisions.

We start with the simplest possible model in which a monopolist is selling a service to
a continuum of consumers with unit demand at a common value, whose evolution is gov-

erned by the replicator dynamics.® Consumers can shut off their service, or sign up, at any

3Accinelli et al. 2009; Bendor and Swistak 1998; Binmore et al. 1995; Bomze 2000; Borgers and Sarin
1997; Boylan 1994; Branch and McGough 2008; Brandt et al. 2006; Cabrales 2000; Cabrales and Sobel 1992;
Cheng et al. 2004; Cheung and Friedman 1998; Cressman et al. 1998; Dekel and Scotchmer 2000; Eichberger
et al. 1993; Ely and Sandholm 2005; Epstein 1999; Friedman 1998; Fudenberg and Harris 1992; Gaunersdorfer
and Hofbauer 1995; Gramig and Horan 2011; Kim 1996; Maliath 1998; Mazzucato 1998; Oechssler and Riedl
2001, 2002; Pawlowitsch 2008; Samuelson and Zhang 1992; Sandholm 2008, 2009; Sandholm et al. 2008;

Sigmund et al. 2011; Viossat 2007; Weibull 1995, 1998a,b; Windrum 1999; Young and Foster 1991.
4Alboszta and Miekisz 2004; Benaim et al. 2008; Bomze 1983, 1995; Boyd and Richerson 2002; Foster

and Young 1990; Fudenberg et al. 2006; Hauert 2010; Hauert et al. 2002, 2004; Hilbe 2011; Luthi et al.
2009; Nowak and Sigmund 2004; Sasaki and Unemi 2011; Stadler and Stadler 2003; Van Veelen 2011.

°In a working paper version of this manuscript, we note that the replicator dynamics has been used in
computer vision, ecology, genetics, machine learning, mathematics, neuroscience, optimization, philosophy,

physics, political science, routing, and spectrum sensing. See Hummel and McAfee (2015) for references.

SSurprisingly, we are not finding this model in the literature. The closest models we have found are
those in Radner (2003) and Radner and Richardson (2003). These papers also consider evolutionary models
in which a monopolist sells to consumers with common values, and find similar substantive conclusions to
those in our model with homogeneous consumers. However, the evolution of consumers in these models is

not governed by the replicator dynamics. Also see Radner et al. (2014).
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time. The model is a reasonable model of a cable service, cell phone provider, or insurance
provider, although it ignores the issue of contracts and switching costs.” The monopolist is
forward-looking and starts with an arbitrary initial market share representing the fraction
of consumers buying the good.

We find that there is a unique limiting market share for the monopolist, and the monopolist
achieves that market share almost immediately. That is, if the monopolist’s initial market
share is too high, it will charge a very high price for a very short period of time to drive just
the right number of consumers away before then charging a price equal to the consumers’
common value. Similarly, if the monopolist’s initial market share is too low, the monopolist
runs a short-lived sale to bring in the necessary contingent of consumers. This limiting
market share decreases in the monopolist’s discount rate and increases in the speed at which
consumers evolve, which are not controversial comparative statics.

We then consider how a more sensible specification of demand affects the model. We permit
a variety of consumer types, each with a distinct value for the product. The monopolist
cannot price discriminate but can vary price over time. Market shares will evolve differently
for different types of consumers because different consumers have different values for the
product. Throughout we assume consumers evolve according to some general model that
subsumes the replicator dynamics as a special case.

We prove that the monopolist eventually sells only to the highest type, and the price
converges to the value of the highest type. In particular, if there is a continuum of types,
the fraction of consumers buying the product goes to zero, and the monopolist eventually

exits. This is true under very general conditions about the decisions made by consumers.

"Implicit in the replicator dynamics formulation is that consumers only change their mind about whether
to purchase the product upon meeting some other individual who is making the opposite decision. This seems
reasonable with insurance, for instance, where gathering information from others may instigate one to make
a different decision about whether to buy insurance. It also seems plausible for cable TV and cell phones,
where consumers who are addicted to using these products may only realize they would be better off without

them upon encountering someone who is happier after ceasing to use these products.
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We argue in the conclusion that this property—that a monopolist eventually exits—makes
the replicator dynamics unsuitable for describing the long-run evolution of consumers. More-
over, the problem with this model is that people are more responsive to prices than the model
posits. We defer this argument until after the analysis. First we present the analysis of the

one type case.

1.1. The One Type Case. There is a continuum of consumers whose value for a product,
net of opportunity costs, is v. We let z(¢) denote the monopolist’s market share at time
t, where x(0) is given. The firm charges a price p(t) at time ¢, and the only restriction
imposed on the price path is that the Riemann integral P(t) = f(f p(s) ds is well-defined.
Consumers may adopt or stop using the product at will, and we assume that the fraction
of consumers who adopt the product evolves according to the replicator dynamics. The
replicator dynamics requires that the rate at which this fraction changes is proportional to
the average utility of adopters, minus the average utility, times the fraction of adopters x.
Since the instantaneous utility of adoption is v — p, while the average utility of consumers is

(v — p)z, under the replicator dynamics we have

(1) &= Mw—p) = (v-p)r))z=Av-pzl-2)°

Now let ¢ denote the monopolist’s cost per product, which we assume to be constant, and

let r denote the monopolist’s discount rate. We can then write the seller’s profits as
o0 [e.e] o
I = / e p—c)xdt= / e (v —c)r dt — / e (v —p)x dt
0 0 0

(e 9] 1 o0 .
= / e v —c)xdt— ~ / et gt
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— / e (v — o)z dt + Z/ e log(l —z) dt + —e " log(1 — z)[2,
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_ /OOO e (0= 0w+ L log(1 — 2)) dt - ilog(l — 2(0)).?

8In games with two strategies, it is already known that under the replicator dynamics, the fraction of
players employing a strategy changes at a rate proportional to the product of the utility difference between

the two strategies and the fraction of players employing each strategy. See e.g. Weibull (1995).
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The function (v—c)z+ § log(1—=x) is strictly concave in 2 and can be maximized pointwise
over z € [0,1] at the value z* = max{0,1 — ﬁ} This in turn implies that the firm
maximizes its profits by choosing prices in such a way that x(t) is as close to z* as possible.
Thus if 2(0) < z*, then it is optimal for the firm to set a price of p(t) = 0 until z(¢) increases
to «* and then set a price of p(t) = v going forward. Similarly, if z(0) > x*, then it is
optimal for the firm to set the maximum possible price until x(t) decreases to z* and then
set a price of p(t) = v going forward. The firm achieves a higher market share when the firm
is more patient (r is low), the gains from trade (v — ¢) are larger, or consumers adjust more
rapidly (A is larger).

The single type model appears to offer an attractive pricing model for a monopolist. The
model is also robust to a variety of restrictions. Note that equation (1) is solvable in closed

0

form, as 4 log({%) = ﬁ = A(v — p), so that log(lfgf()t)) - log(lf(x()o)) = Avt — P(t)), or

x(t) - z(0) vt—P(t
2) g Rl g L

Unfortunately equation (2) demonstrates that there are going to be problems if there are

multiple types. If we make the dependence on v explicit in equation (2), so that

z(wt) _ x(v,0) Avt—P(1))
1—z(v,t)  1—x(v,0) ’
then
z(v,t) z(v,0)
1—z(v,t) _ 1—z(v,0) 6)\(@_”)15
z(u,t) z(u,0) '

1—xz(u,t) 1—2(u,0)

This ratio doesn’t depend on the price path and it diverges or converges to zero as t gets
large. Thus, every price path has the property that, if type vy has a market share headed to

1, any type v > vy not only has a market share closer to 1, but arbitrarily closer to 1 after

INote that limy_,oc e~ " log(1 —z(t)) = 0 since & < Av(1 — x), which implies |log(1 — z(t))| < Avt+ C for
some constant C' and lim;_,o, e~ " log(1 — x(t)) = 0. The firm’s profits are increasing in x(0), but they do

not diverge as x(0) — 1 if there is a maximum price pyq, because then the firm’s profits can never exceed

Pmaxz—C
T
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a sufficiently long time. This will, in turn, imply that those consumers are secure to price
increases, which makes price increases inevitable in the model, thereby eventually driving
consumers out of the market. Thus monopolists eventually exit when consumers’ values
are drawn uniformly from the interval [v — ¢,v + €] for some small € > 0 even though the
monopolist sells forever when all consumers’ values are v.

In the next section, we consider a generalization of this model and prove the main theorem.

2. MODEL

There is a monopolist firm and a continuum of possible consumer types © = [0, 0] that
is a closed and bounded subset of the non-negative reals. Throughout we let § € © denote
an arbitrary consumer type, which will determine a consumer’s willingness to pay for the
product. Consumer types 6 are distributed according to the cumulative distribution function
['(0,t) with corresponding probability density function (0, t) that varies continuously with
the time ¢ and satisfies y(0,t) € [vr, vg] for some v, > 0 and vy < oo for all § € © and ¢.

A consumer of type 6 is willing to pay some amount v(f,t) for a product being sold by
the firm at time ¢, where v(6,t) is a strictly increasing function in 6 for all ¢, and v =
sup, v(0,t) < oo. Throughout we also assume that #(q) = infy; v(6 +q,t) —v(6,t) > 0 for all
q > 0. Thus the maximum value of any of the consumers remains finite and bounded for all
t and the difference in values between any two consumer types also remains bounded away
from zero for all ¢.

There are an infinite number of consumers of any given type €, and the fraction of con-
sumers of type # who consume the product at time ¢ is some quantity z(0,t). The fraction
x(6,t) evolves according to a process that may depend on a number of different variables. In
general we allow the rate at which this fraction changes to depend on the difference between
the consumer’s willingness to pay for the product and the product’s price, the fraction of
consumers of this type who are already consuming the product, and some weighted average

of the fraction of the other types who are consuming the product.
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Formally, we let p(f) denote the price that the firm sets at time ¢, and let z(f) =
f; w(B,t)x(0,t) df denote a weighted average of the values of z(f,t) according to some
weighting term w(#,t) that satisfies fg w(f,t) df =1 for all ¢ and varies continuously with
t. An example weighting function would be w(#,t) = v(6,t), in which case z(t) = Ey[z(60,1)]
for all ¢.

At time ¢ = 0, the value of x(6,0) is an exogenously given function of € in the interval
(0,1) that varies continuously with 6. For times ¢ > 0, if p(t) denotes the price that the
firm sets at time ¢, then #(0,t) = f(v(6,t) —p(t))g(x(0,t))h(z(t)), where f(-) is an arbitrary
locally Lipschitz continuous and strictly increasing function satisfying f(0) = 0, g(-) is an
arbitrary Lipschitz continuous function on [0, 1] that satisfies g(z) > 0 for all € (0,1)
and lim, o g(z) = lim,_; g(x) = 0, and h(z) is an arbitrary locally Lipschitz continuous
and strictly positive function throughout the interval [0,1]. Thus the rate at which the
fraction of consumers of type 6 who are consuming the product changes can depend on the
difference between the consumer’s willingness to pay for the product and the product’s price
(v(0,t) —p(t)), the fraction of consumers of this type who are already consuming the product
(x(0,t)), and a weighted average of the fraction of consumers of all types who are consuming
the product (Z(t)). The model here is far more general than standard models of the replicator
dynamics, which effectively assume that f(v) = Av for some A > 0, g(x) = z(1 — z), and
h(x) = 1, though it is neither more general nor less general than the regular selection
dynamics in Hofbauer and Weibull (1996) and Riztberger and Weibull (1995).

In this model the assumption that f(-) is a strictly increasing function satisfying f(0) = 0
implies that the fraction of consumers of a given type who consume a product increases
(decreases) if the product is being sold for less (more) than that type’s willingness to pay,
and the rate at which this fraction increases (decreases) is increasing in the magnitude of the
difference between a type’s willingness to pay and the product’s price. The assumption that
lim, ¢ g(x) = lim,_,; g(z) = 0 implies that if nearly all consumers of a given type are already
consuming (not consuming) the product, then the rate at which this fraction of consumers

will continue to increase (or decrease) becomes arbitrarily small.
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The firm’s profit from a given pricing strategy p(t) is [;° 6" (p(t) — ¢)Eg[x(0,¢)] dt, where
d € (0,1) denotes the firm’s discount factor and ¢ > 0 denotes the cost of the product
to the firm. We seek to analyze the properties of a firm’s optimal pricing strategy in this
model of evolutionary consumers. Throughout we assume that the firm must always set a
non-negative price and there is some maximum possible price P > v such that a firm may

never set a price greater than P.

3. RESuLTS

We ultimately seek to show that under the optimal pricing strategy, it is necessarily the
case that the fraction of consumers who purchase the product tends to zero in the limit as
t — o00. To prove this, we derive several preliminary results on how the fraction of consumers

who purchase the product must evolve over time. First we present the following lemma:

Lemma 1. There exists some continuous and strictly increasing function ¢ satisfying lim,_,_ ., ¢(x) =
0 and lim,_, ¢(x) = 1 such that the fraction of consumers of type 8 who purchase the product

at time T, x(0,T), satisfies x(0,T) = ¢(¢~ (x(0,0)) + fOT fw(0,t) —p(t))h(z(t)) dt).

All proofs are in the appendix. This result shows that the fraction of consumers of a
given type who purchase a product at time T, z(0,T), can be written as a function of
the fraction of consumers who purchased this product at time ¢ = 0, z(0,0), and the
integral fOT f(v(0,t) — p(t))h(Z(t)) dt. The result is proven by rewriting the equation
00— F(0(0,1) — p(t))g(2(6, ) A(T(1)) as 280 = F(u(6,t) — p(t))h(E(1)) dt, integrating

both sides, and rearranging terms to obtain an expression of the form in Lemma 1.

A consequence of this result is that if a significant fraction of consumers are still purchasing
the product even after a long time has passed, then it will necessarily be the case that the
fraction of some consumer types who purchase the product will be exceedingly close to 1. In

particular, we have the following result:

Lemma 2. For any value of € > 0, there exists some sufficiently large T" such that the

following results both hold:
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(a). If x(0*,t*) =y for some t* > T and y € (e,1 —€), then x(0,t) < e if 0 < 0* — € and
x(0,t) >1—€if 0 > 0"+ ¢ forallt € [t*,1* + %] regardless of the price path chosen by
the firm.

(b). If x(8,t*) > € for somet* > T, then x(0,t) > 1—¢ if 0 > 0+¢€ forallt € [t*,t*—l—%]

regardless of the price path chosen by the firm.

Lemma 2 follows directly from Lemma 1. If prices up to some long time 7" have been such
that a significant fraction of consumers of type 6 are consuming the product, then consumers
who value the product slightly more than this will have evolved to the point where nearly
all of them are consuming the product. But once nearly all consumers of a given type are
purchasing the product, then the rate at which the fraction of consumers of this type who
purchase the product changes becomes arbitrarily small since lim, ,; g(z) = 0. Thus even
if the firm charges the maximum possible price, nearly all of these consumers will still be
purchasing the product after a very large amount of additional time has passed.

Similar reasoning implies that if prices up to some long time 7" are such that a significant
fraction of consumers of type 6 are not consuming the product, then even if the firm charges
nothing, nearly all consumers who value the product for less than 6 will not purchase the
product even after a very large amount of additional time has passed. Together, these
insights imply the result in Lemma 2.

An immediate consequence of Lemma 2 is that if a significant fraction of consumers are
still purchasing the product even after a very long time has passed, then the firm will want
to charge close to the maximum possible price for a considerable amount of time thereafter.

In particular, we have the following result:

Lemma 3. For any fized y € (0,1) and fived 6* < 0, consider some arbitrarily small value
of € >0, and let Ty(e) denote a value of T corresponding to the value of € that satisfies the
conditions given in Lemma 2. Then if x(0,t*) > y for some 0 < 6* and some t* > Ty(e),

then the firm mazimizes its profits from the game beginning at time t* by choosing prices

within O(¢€) of the mazimum possible price for all t € [t*, t* + %].

10
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Lemma 3 follows from Lemma 2. Since Lemma 2 guarantees that the fraction of consumers
who will purchase a product going forward will hardly be affected by the prices that a firm
charges once a considerable amount of time has passed, a firm might as well charge prices
that are exceedingly close to the maximum possible price that the firm can ever charge. This
implies the result in Lemma 3.

But Lemma 3 ultimately implies that a price path in which a positive fraction of consumers
continue to purchase the product as t — oo is inconsistent with profit-maximizing behavior.

We present the main result of this section below:

Theorem 1. Under the optimal price path, the fraction of consumers who purchase the

product tends to zero in the limit as t — oo.

The reason for this result is that if the fraction of consumers who purchase the product
does not tend towards zero in the limit as ¢ — 0o, then we know from Lemma 3 that the
firm will have an incentive to charge the maximum possible price. But if the firm charges
such a large price, then ultimately the fraction of consumers who purchase the product will

have to tend towards zero. This gives the result in Theorem 1.°

4. EXTENSIONS

This paper has illustrated that when a monopolist faces a continuum of consumers whose
purchasing decisions evolve according to a broad generalization of the replicator dynam-
ics, then the monopolist eventually exits. We now discuss the robustness of this result to
modeling extensions.

First we note that our results would continue to hold even if the monopolist were selling to

a continuum of firms rather than a continuum of consumers. If there is a continuum of firms

10While Theorem 1 guarantees that monopolies will eventually exit, the amount of time it takes to reach
the limiting behavior in Theorem 1 depends significantly on the parameters of the game and can range from
a few decades (for impatient firms) to several centuries (for patient firms), as we show in Section B of the
appendix. The fact that it may take a long time for sales to become small may mean that the replicator
dynamics provides a reasonable approximation for an empirical study over a short time frame, but it does

not change the fact that it does not provide a satisfactory model of consumers over long time horizons.

11
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with different values for a monopolist’s product, and we model the evolution of these firms’
purchasing decisions using the model in Section 2, then the same reasoning can be used to
establish that the monopolist eventually stops selling to these firms. This suggests that it
may also be inappropriate to model the evolution of firms using the replicator dynamics.

Next note that our results would also continue to hold if there were externalities and a
consumer’s willingness to pay depends on the fraction of other consumers that are purchasing
the product. To incorporate externalities into the model, we could model a consumer’s
willingness to pay by v(6,¢,Z(t)) so that a consumer’s willingness to pay depends on Z(t) in
addition to 6 and t. Under this alternative model, all of the results in our manuscript continue
to hold because none of the proofs of our results in any way depend on the assumption that
v(+) is independent of the fraction of other consumers that are purchasing the product.

Also note that the assumption that there is a continuum of consumer types is not crucial
to derive the main substantive result of the paper. In a model with bounded but discrete
types, nearly identical reasoning can be used to establish that, if the maximum price is large
enough, only consumers with the highest type will consume the product after a long time
has passed. Thus the monopolist’s sales eventually become very small even if there is not a
continuum of types.

Finally, we address the question of whether the result in Theorem 1 will continue to hold
if one weakens the assumption that the rate of change in the quantity purchased goes to
zero in the limit as the fraction of consumers purchasing the product tends to zero or one.
In our main model, we have focused on a setting in which lim,_,o g(z) = lim,_,; g(x) = 0,
so the rate of change in the quantity purchased goes to zero in the limit as the fraction of
consumers purchasing the product tends to zero or one. However, one could alternatively
model evolution by assuming that g(x) is bounded away from zero for all z € [0, 1], and
then assume that @(0,t) = max{0, f(v(0,t) — p(t))g(z(0,t))h(Z(t))} when z(0,t) = 0 and
#(6,t) = min{0, f(v(0,t) — p(t))g(x(0,t))h(z(t))} when z(0,t) = 1.

Under this alternative model, the rate of change in the quantity purchased does not go

to zero in the limit as the fraction of consumers purchasing the product tends to zero or

12



Hummel and McAfee Evolutionary Consumers

one. However, the fact that (0,¢) > 0 when x(6,t) = 0 and (0,t) < 0 when z(0,t) = 1
ensures that the fraction of consumers of a given type that purchase the product will never
fall below zero or rise above one. Under this setting, we can prove that as long as there is
positive measure of consumer types whose values for the product exceed the monopolist’s

costs, the monopolist will not exit:

Theorem 2. Suppose there is some 6* < 0 such that v(6*) = liminf, ., v(0*,t) > c. Then
under the alternative model of consumer evolution in which g(x) is bounded away from zero
for all x € [0,1], the fraction of consumers who purchase the product does not tend towards

zero in the limit as t — 0.

Theorem 2 suggests that the key problem with the replicator dynamics that results in
the unrealistic behavior in Theorem 1 is the assumption that consumers evolve so slowly
near the extremes of zero and unit market shares. In general, we would expect consumers
to evolve more quickly near these extremes than the replicator dynamics predicts since the
replicator dynamics implies these consumers are very slow to change purchasing decisions in

these cases, even if the monopolist is charging a very low or very high price.

5. CONCLUSION

This paper has illustrated that when a monopolist faces a continuum of consumers whose
purchasing decisions evolve according to a broad generalization of the replicator dynamics,
then the monopolist eventually exits. The reason for this finding is that if a significant
fraction of consumers are still purchasing the product after a long time has passed, then
evolution implies that nearly all consumers with values greater than the marginal type will be
purchasing the product. The replicator dynamics implies that almost all of these consumers
will continue to purchase the product for a very long time even if the monopolist charges
these consumers more than their value. This in turn creates an incentive for the monopolist

to raise prices, which eventually causes all consumers to stop purchasing the product.
13
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The conclusion that monopolies exit when faced with evolutionary consumers seems at
odds with reality and suggests that the evolutionary model of consumers based on the repli-
cator dynamics may not accurately reflect the evolution of consumer strategies. While this
does not establish what the best theory would be, there are several possible alternatives
where consumers may be more sophisticated than they are in an evolutionary model based
on the replicator dynamics.

First, under the replicator dynamics, consumers only change strategies at a rate propor-
tional to the instantaneous difference in utility obtained as a result of adopting or dropping
the product. However, if a consumer is currently being charged more than the amount he
values the product, that consumer may anticipate that this overcharging will continue and
thus exit more rapidly than the replicator dynamics would predict. The replicator dynamics
also tacitly assumes history independence. However, consistent patterns may be easier to
detect and act on, so a firm that is consistently charging more than a consumer’s value may
spawn an outsized reaction.

As a whole, a theory that allows consumers to evolve more quickly near the extremes of zero
and unit market shares would seem to better describe reality, as such an alternative model of
evolution would not imply that monopolies exit. The replicator dynamics may be plausible in
economic situations where the extreme of extinction of a strategy is unlikely, but alternative
models (such as best response dynamics considered in Dindos and Mezzetti (2006)) are likely

needed to describe evolution once nearly all players have adopted a particular strategy.

APPENDIX A. PROOFS OF MAIN RESULTS

Lemma 0. [ ﬁ dv = fx y dz = oo for all zo € (0,1).

09

Proof. Since g(z) is a Lipschitz continuous function on [0, 1] satisfying ¢(0) = 0, there exists
some 3 > 0 for which g( ) < Bz for all z, which in turn implies that ( ) > 1 for all z. Thus
de > [ 4= do = o0, so [

0 7 w) ( dr = oo for all zp € (0,1). A similar argument

shows that f dr = oo for all ¢ € (0,1). O

14
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Proof of Lemma 1: Since dz(a’t) = f(v(0,t)—p(t))g(z(0,t))h(Z(t)), it follows that dx(g 3) =

F@(0,8) = p(£)h(E(1)) dt, meaning [Ty ~Ls do = [ f(0(0,) = p(£)h(E(¢)) dt. Thus if
G(x) is an anti-derivative of —L5, then it must also be the case that G( 0, 7)) —G(x(6,0)) =
I F(8,8)—p(t))h(z(t)) dt, meaning G(z(0,T)) = G(x(0,0))+ [, f(v(8,t)—p(t))h(z(t)) dt.
L) and m is strictly positive for all z € (0, 1),

Now since G(z) is an anti-derivative of —=

it must be the case that G(x) is a strictly increasing function in z, so the inverse of G(x),
G~Y(xz), is well-defined. By using this insight and the result in the previous paragraph, it then
follows that z(0,T) = G~[G(x(6,0)) —|—f0 v(0,t)— ( Nh(Z(t)) dt]. Thusif ¢(z) = G~ (z),
then it follows that x(0,T) = ¢(¢1(x(0,0)) + fo v(0,t) — p(t))h(z(t)) dt).

To prove the result, it thus suffices to show that ¢(:U) = G~!(z) is a continuous and strictly
increasing function satisfying lim,_,_, ¢(x) = 0 and lim, ., ¢(x) = 1. To see this, note that
since G(z) is a strictly increasing function in x, it must also be the case that ¢(x) = G~!(x)
is a strictly increasing function in z. And since G(x) is an anti-derivative of a continuous
function on (0, 1), it follows that ¢(z) = G~!(x) must also be continuous on (0,1). Finally
1

dr = dr = oo for all zy € (0,1) (by Lemma 0) and G(z) is an anti-

since fo 07 (x)

g(w)
derivative of Tw)’ it must be the case that lim, o G(z) = —oo and lim,_,; G(x) = co. From

this it follows that ¢(x) = G~1(z) satisfies lim, s o ¢(z) = 0 and lim,_,, ¢(z) = 1. O

Throughout the remainder of the appendix we make use of the following definition:

Definition 1. Define T(e) to be the value of 2249,

Proof of Lemma 2: Let fa(e) denote the smallest value of f(v) — f(v — €) taken over all
values of v € [v — P,0] (where v = inf, v(6,t)), and let h denote the smallest value of h(x)
for all z € [0,1]. Also let H denote the largest value of h(x) for all z € [0, 1]. Finally let ¢a
denote the largest value of the absolute difference |¢~*(z(6,0)) — ¢! (x(#,0))] for all values
of # and ¢ in [0, 0].

Note that decreasing the value of 6 by at least ¢ decreases the value of the integral

fg* f(w(8,t) — p(t))h(z(t)) dt by a minimum of t*fa(0(e))h. Thus decreasing the value of 6
15
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by at least € also decreases the value of ¢~ (x(6,0)) + fg f(v(0,t)—p(t))h(z(t)) dt by a min-
imum of t*fo(0(€))h — pa. At the same time, the value of fg*+T(€) f(w(0,t) —p(t))h(z(t)) dt
can never exceed the value of fot f(w(8,t) — p(t))h(z(t)) dt by more than f(v)HT ().

Thus if T satisfies T fa(0(€))h > ¢~ (1 —€) — ¢~ (e) + ¢a + f(U)HT (¢) and z(6*,t*) =y
for some t* > T and y € (¢,1 — €), then it is necessarily the case that x(6,t) < e for all
0 <0 —candte[tt"+T(e)]. A similar argument shows that if T" satisfies T'fa(0(€))h >
o H1—€)—d Y e)+da+|f(v—P)|HT(¢) and z(6*,t*) > y for some t* > T and y € (¢, 1 —e),
then it is necessarily the case that x(0,t) > 1 — e for all @ > 0* + e and t € [t*,t* + T(¢)]. O

Proof of Lemma 3: The proof breaks down into two cases. Suppose first that x(é, t*) =
y for some 6 < 0*. If we consider the game beginning at the time t*, then the firm’s

total payoff from using an arbitrary price path p(¢) from the game beginning at time ¢* is
O S (p(t) — ) Eql2(0, £°)]¢] dt+O(e), where Eylz(8, t)[] = [, (6,1*)7(6,¢) db: Note
that §7() = elos)T() — glogle) — ¢ 50 the firm’s total payoff from the part of the game for
the time interval ¢ > t* + T'(¢) is O(¢). And from Lemma 2, we know that z(0,t) < € if
0 <0—cand z(0,t) >1—cif 0 > 0+ for all ¢ € [t*,t* 4+ T(¢)] regardless of the price path
chosen by the firm. From this it follows that the total fraction of consumers who purchase
the product at time ¢ cannot differ from Ey[x(6,¢*)|t] by more than O(e) regardless of the
price path chosen by the firm. Thus the firm’s total payoff from using an arbitrary price
path p(t) from the game beginning at time t* is :JFT(E) S (p(t) — ) Eglz(0,t%)|t] dt + O(e).
But this expression implies that a firm will maximize its payoff by using prices within O(e)
of the maximum possible price during the time interval [t*,¢*+T'(¢)]. The result thus follows
if 2(0,¢) = y for some 0 < 6*.
If a:(é, t*) = y does not hold for any 6 < 6*, then it must be the case that a:(é, t*) > y for all
6 < 0*, and in particular that z(6,¢*) > y. If we consider the game beginning at the time t*,
then the firm’s total payoff from using an arbitrary price path p(t) from the game beginning

at time t* is again Li*JrT(e) S (p(t) — ) Eglx(0,t)|t] dt 4+ O(e): The firm’s total payoff from
the part of the game for the time interval ¢ > t* 4 T'(¢) is again O(¢), and from Lemma 2,

we know that z(0,t) > 1 —eif @ > 0+ ¢ for all t € [t*,t* + T'(€)] regardless of the price path
16
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chosen by the firm. From this it follows that the total fraction of consumers who purchase the
product cannot change by more than O(e€) during the time interval [t*, t* 4 T'(€)] regardless of
the price path chosen by the firm. Thus the firm’s total payoff from using an arbitrary price
path p(t) from the game beginning at time ¢* is ﬁ:JrT(E) S0 (p(t) — ) Eglx (0, t)|t] dt + O(e).
But this expression implies that a firm will maximize its payoff by using prices within O(e)
of the maximum possible price during the time interval [t*,¢*+T'(¢)]. The result thus follows

if x(é, t*) = y does not hold for any 0 < 6*, which proves the desired result. O]

Proof of Theorem 1: Suppose by means of contradiction that this result does not hold.
Then there exists some fraction y > 0 and some 6* € (6, 6) such that there is no value of T
for which ¢ > T implies x(6,t) < y if § < 6*. For any given value of #* € (6,0), let Y (6*)
denote the set of all values of y > 0 for which there is no value of 7" such that ¢ > T implies
x(0,t) <y if 0 < 0* and let y(6*) denote the supremum of Y (0*). Now consider two cases.

First suppose there is some value of 6* € (8,6) for which y(6*) € (0,1). Consider some
arbitrarily small value of € > 0, and let Ty(e) denote a value of T corresponding to this
value of € that satisfies the condition given in Lemma 2. Note that there must be some time
t* > Ty(e) for which x(6*,t*) € [y(6*) — e, y(0*) + €] because if this did not hold then it would
either be the case that x(6*,t) > y(0*) + € for all t > T,(e) or it would be the case that
x(0%,t) < y(0*) — € for all t > Ty(e), either of which would contradict the definition of y(6*).
Thus there is some time t* > Ty(€) for which z(0*,t*) € [y(0*) — €, y(6%) + €].

But for any such time t*, we know from Lemma 3 that a firm will maximize its payoff by
using prices within O(e€) of the maximum possible price during the time interval [t*, ¢*+T(¢)].
Thus if z(0*,t*) € [y(0*) — €, y(0%) + €], then it will necessarily be the case that (0, t* +T'(¢))
is much less than y(6*) — € for all values of § < §*. And similar reasoning shows that under
the optimal price path, z(6,t) can never become anywhere near as large as y(6*) — € for any
values of ¢t > t*+T'(¢) if # < 6*. This contradicts the definition of y(#*) and proves that this
case cannot hold.

Next suppose there is no value of 6* € (6,0) for which y(6*) € (0,1). Since we know that

there is some value of §* € (6, 0) for which y(6*) > 0, this in turn implies that there is some
17
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value of 0* € (6,0) for which y(0*) = 1. Moreover, by the definition of 3(6), y(f) must be
non-decreasing in 6. From this it follows that there must exist some 6 € [0,0) for which
y(0) =1if 6 > 0 and y(#) =0 if 6 < 0.

Now consider some type 6 € (,0). Since y(d) = 1, it follows that for any y € (0,1) and
any time T there exists some t* > T for which z(f,#*) > y. Thus for any arbitrarily small
e > 0,if t* > Ty(e), then we know from Lemma 3 that a firm will maximize its payoff by using
prices within O(e) of the maximum possible price during the time interval [t*, t* +T'(¢)]. But
since this held for any t* > Ty(e) for which (6, t*) > y, it then follows that z(6,t) remains
bounded above by (6, *) for all t > *, and thus z(6,t) remains bounded away from 1 for
all # < 0 and ¢ > t*. Since this contradicts the fact that y(é) = 1, this proves that this case

cannot hold. The result then follows. [

Proof of Theorem 2: Suppose by means of contradiction that the fraction of consumers
who purchase the product tends towards zero in the limit as ¢ — oo. In that case, for any
€ > 0, there exists some T such that the fraction of consumers purchasing the product is less
than e for all £ > T', which in turn implies that the monopolist obtains a payoff no greater than

% for the game starting from time ¢t = 7. However, if the monopolist instead offers to

sell the products for a price p(t) = % for all t > T, then since v(0,t) — p(t) > % >0
for all @ > 0* and t > T, and g(z) is bounded away from zero for all x, it follows that there
is some d > 0 such that (0,t) > d for all § > 0* and t > T as long as x(6,t) < 1.

The above result implies that if the monopolist instead offers to sell the products for a
price p(t) = ”(%HC for all t > T, then after ©(¢'/3) time has passed, the fraction of consumers
of type 6 > #* who will be purchasing the product will be Q(e/?). This in turn implies that
the firm obtains a profit of Q(¢'/3) at any given point in time once ©(e'/?) time has passed,
which in turn implies that the firm obtains an overall profit of (¢'/?) for the game starting
from time ¢t = T' by following this strategy. This then means the monopolist can obtain a

greater profit starting from time ¢ = T" by following this strategy than by following a strategy

in which the fraction of consumers purchasing the product is less than € for all ¢ > T'.
18
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Since the monopolist would be able to profitably deviate if the monopolist is following a
pricing strategy such that the fraction of consumers who purchase the product tends towards
zero in the limit as t — oo, it follows that the fraction of consumers who purchase the product

does not tend towards zero in the limit as t — oco.

APPENDIX B. SIMULATIONS

This section illustrates that the amount of time it will take to reach the limiting behavior
in Theorem 1 will depend significantly on the parameters of the game. To illustrate this,
we consider a setting in which consumer evolution is governed by the replicator dynamics in
that if z(v, t) denotes the fraction of consumers with value v who are consuming the product
at time ¢t and p(t) denotes the price at time ¢, then &(v,t) = A(v — p(t))z(v,t)(1 — x(v,1)).

We have seen in equation (2) that in this setting, we have

z(v,t) _ z(v,0) Awi—P(D)
1—xz(v,t) 1-—2x(v,0) ’

where P(t) = fotp(s) ds. Thus we also have

( t) [L'(’U, O)BA(vtfP(t)) ZIZ’(U, O)e)\vt
z(v,t) = = :
’ 1 —2(v,0) + z(v,0)ervt=P®) (1 — x(v,0))er®) + z(v,0)e

Now consider a setting in which the fraction of consumers with value v who are initially

purchasing the product, (v, 0), is some constant independent of v, and let z = lfgj(f)o). Also

suppose that consumer values v are uniformly distributed on the interval [0, 1]. Then total

sales at time ¢ are

1 1 Ze)wt
r(v,t)dv = ——— dv
/0 (v,1) /0 AP 1 et

1 1 2hteMt
At Jo erP) 4 zetvt

1

1
_ E1Og(6>\P(t)_|_Z€)\vt)

1
(3) = E(log(em(t) + ze)‘t) — log(e’\P(t) + 2)),
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so the monopolist’s total profit from using the pricing strategy P(t) if the monopolist has

zero costs and a discount factor of § = e " is
II= / e’”P(t)E(log(e’\P(t) + zeM) —log(e*® + 2)) dt.
0

By applying the Euler-Lagrange equation, we then see that if g(P(t),t) is defined by
G(P(1),1) = 7L (log(¥P0) + 26M) — log(eP) + 2)) and F(P(t), P(t),1) = P(t)g(P(1), 1),

then the optimal P(t) satisfies 25 = %%, which implies P(t)g—lgp = 4g(P(t),t) = P(t)%—i—%,

which in turn implies % = 0. Thus the optimal P(t) satisfies % = (0, meaning we have

0

0 = [e‘”i

Y

B! (log(eM'® + zeM) — log(eM® + Z>>:|

_ + 1 —rti(l ( AP(t) + )\t) —1 ( AP(t) + )) + —Ttl ZeAt
= T / e >\t ogle ze ogle z e t—eAP(t) T ze)‘t
1 zeM 1\ 1
= 67”2 [W — <T —+ ;) X(log((i)‘P(t) -+ Z@At) — 1Og(€)\P(t) —+ Z)):| s
which is in turn satisfied if and only if
2AeM 1
(4) m — (7“ -+ 2) (10g(€)\P(t) + ZGM) — IOg(G)\P(t) + Z)) =0.

By using equation (4) to compute the optimal P(t), we can then use the resulting P(t) to
compute sales at any given point in time using the expression for sales in equation (3).

By conducting such analysis, we find that the length of time it takes to reach the limiting
behavior in Theorem 1 depends significantly on the parameters of the game. Suppose, for
instance, that A = 1 and z = 100 so that over 99% of consumers are initially purchasing the
product. Then if firms are quite patient (e.g. r = 0.02), then firms retain a 10% market
share even after 450 years. By contrast, if firms are impatient (e.g. r = 0.2), then the firm’s
market share drops below 10% after just 45 years. Thus the length of time it takes to reach

the limiting behavior in Theorem 1 depends significantly on the parameters of the game.
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