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Online publishers sell opportunities to show ads. Some advertisers pay only if their ad elicits a user response.
Publishers estimate response rates for ads in order to estimate expected revenues from showing the ads. Then
publishers select ads that maximize estimated expected revenue.

By taking a maximum among estimates, publishers inadvertently select ads based on a combination of
actual expected revenue and inaccurate estimation of expected revenue. Publishers can increase actual
expected revenue by selecting ads to maximize a combination of estimated expected revenue and estimation
accuracy.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Online publishers use auctions to sell opportunities to advertise,
called ad calls, to online advertisers. There are two broad categories of
online advertising auctions: search and display. In search advertising
auctions the advertiser pays only if their ad elicits a click. In display
advertising auctions, advertisers may select a basis for payment. Some
advertisers pay when the ad is shown, others pay only when showing
the ad elicits a user response such as a click or a purchase. (For details
on auctions for online advertising, refer to Varian (2006, 2009),
Edelman et al. (2007), and Lahaie and Pennock (2007).)

When advertisers pay per click or other user response, the revenue
received by the publisher for showing an ad is random. Since user
response rates are not known exactly but must be estimated, there is
uncertainty in addition to randomness. The estimation accuracy of
response rates varies. One reason is that the amount of historical data
varies. Another reason is that the response rates themselves vary, and
more data is required to estimate smaller rates with the same relative
accuracy.

With randomness, a risk-neutral seller seeks to maximize
expected revenue. Facing uncertainty, the seller may select an offer
having maximum estimated expected revenue. However, this is not
necessarily the best policy for maximizing actual expected revenue.

The reason is that selecting a maximum estimate selects for a
combination of having an over-estimate and having a large actual
expected revenue. Someclassesof ads aremore likely tohave inaccurate
estimates, such as adswith lower response rates and ads forwhich there
is less historical data. Even if the individual response rate estimates are
unbiased, these classes are more likely to have the largest response rate
over-estimates. So selecting a maximum estimate can favor these
classes even if they offer less expected revenue than other classes.

Havingmore buyers in the auctionexacerbates the problem, because
more estimates means more and more extreme over-estimates.
However, havingmany buyers is not sufficient for selecting amaximum
estimate to be a sub-optimal policy for maximizing expected revenue.
Varying levels of uncertainty about revenue distributions is also
required.

This paper is organized as follows. Section 2 describes related work.
Section 3 presents some theory on selection bias for estimated offer
values. Section 4 explores correcting selection bias for online display
advertising auctions. Section 5 focuses on corrections for search
advertising auctions. Section 6 discusses opportunities for future work.
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2. Related work

There are a few areas of work related to this paper. One is work by
Athey and Levin (2001) on U.S. Forest Service timber auctions. In that
work, as in this paper, the seller selects an offer (ex ante) based on
estimated values but is paid (ex post) based on actual values. The
forest service work focuses on how buyers can use private
information to exploit the seller's estimation and selection process.

Another area of related work, byWilson (1969) and Thaler (1988),
concerns the winner's curse. The winner's curse occurs whenmultiple
bidders estimate the value of an item and submit bids based on those
estimates. The auctioneer, by selecting the highest bid, tends to select
a bid based on an overestimate of value. As a result, the winner tends
to realize less value than their bid. Both the winner's curse and the
revenue loss studied in this paper are the result of the difference
between actual values and first order statistics of estimates of values.
(For more on order statistics, refer to David and Nagaraja (2003).) The
revenue loss studied in this paper is borne by the seller or market-
maker, because the seller or market-maker must estimate the values
of bids and bears the exposure frommisestimation.When the bidders,
rather than the market-maker, bear the risk, Wilson (1969) gives a
method to correct for bias.

Another area of related work is machine learning, where uniform
error bounds are used extensively to predict whether a model
selected on the basis of limited training data is likely to fit as-yet-
unseen data drawn from the same distribution. As limited training
data is used to estimate the test performance of more models, it
becomes less likely that a model that maximizes estimated expected
performance will perform nearly as well as its estimate on test data.
(For background on machine learning, see Duda et al. (1973), Valiant
(1984), and Devroye et al. (1996). Work on uniform error bounds
includes Vapnik and Chervonenkis (1971), Audibert et al. (2007),
Langford (2005), and Bax and Callejas (2008).) This effect is similar to
the gap between a maximum estimated expected revenue ad and the
actual expected revenue from that ad. Both are manifestations of
regression to themean, studied by Galton (1886) and Samuels (1991).

The nested classes of classifiers used in support vector machines
and other kernel classifiers are similar to classes of ads with different
estimation accuracies in this paper. Kernel methods favor classifiers
from classes withmore certain bounds on test data performance, even
if their estimated expected performance is slightly inferior to
classifiers from classes with more uncertainty. For more on support
vector machines, refer to Vapnik (1998). For other kernel methods,
refer to Shawe-Taylor and Cristianini (2004).

In statistics, Hsu and Chen (1996), Wilcox (1984), and Bechhofer
and Turnbull (1978) study procedures to select populations with
maximummeans among sets of populations. In this paper, offers play
the role of populations and awarding an ad call to an offer plays the
role of a sample. Their work focuses on determining the number of
samples needed to confidently select a population with maximum
mean, while this paper focuses on selecting an offer before any further
sampling.

3. Theory of selection bias for estimated offers

This section shows that favoring offers that have more accurately
estimated offer values improves revenue, under the following model.
Actual offer values μ1,…,μn are drawn i.i.d. from some distribution.
The auctioneer does not know these actual values. Instead, the
auctioneer receives unbiased estimates X1,…,Xn of the offer values.
The estimation errors are normal, and the auctioneer knows their
standard deviations σ1,…,σn.

For simplicity, we assume a first-price auction in this section.
Expected revenue is the actual offer value μ i of the winning offer. In
subsequent sections we focus on second-price auctions.

Suppose the auctioneer selects a parameter value c and selects an
offer that maximizes Xi−cσi as the winning offer. Let r(c) be the
expected revenue from the winning offer. Then

r cð Þ = E μ arg max Xi−cσið Þ
i

" #
;

where the expectation is over the distribution of (μ1,…,μn,X1,…,Xn).
The following theorem shows that selecting an offer based on the

combination of estimated value and accuracy of estimation Xi−cσi

increases expected revenue over simply selecting an offer with
maximum estimated value Xi. Specifically, when there are near ties for
max(X1,…,Xn), expected first-price revenue increases if we break ties
in favor of offers with lower σi.

Theorem 3.1. Let unknown actual offer values μ1,…,μn be i.i.d. random
variables. Let estimated offer values X1∼N (μ1,σ1),…,Xn∼N (μn,σn) be
normal random variables with actual offer values μ1,…,μn as means and
known standard deviationsσ1,…,σn. Assume n≥3 andσ1,…,σn are not all
equal. Then

∂r cð Þ
∂c

�����
c=0

N 0:

The proof is in Appendix A. Here is a sketch of the proof based on
a small example. Let n=3, with σ1=0, σ2=1, and σ3=2. Let μ1,
μ2, and μ3 be drawn independently and uniformly at random from
{7,10}. Then X1∼N (μ1,0), X2∼N (μ2,1), and X3∼N (μ3,2). Define
X⁎=max(X1,X2,X3).

Informally, the theorem says that when Xi and Xj are nearly tied for
X⁎, if we break the near tie in favor of the value with lower σ, then we
increase the expectation of the selected μ . We can ignore cases where
μ i=μ j, because selecting either value produces the same winner's μ .
(We also ignore three-way ties, because they have probability O(c2) as
c→0.)

Without loss of generality, assume σjbσi. Let T be the condition
that Xi and Xj are nearly tied for X⁎. Let W be the condition that
breaking the near tie in favor of lower σ selects the greater μ: W=
{μi=7∧μj=10}. Let W be the condition that we select the lower-μ
value as winner: W = μi = 10∧μj = 7

� �
. We want to show

Pr W jTf g N Pr W jT� �
:

Using Bayes' Theorem:

Pr T jWf g =
Pr W jTf gPr Tf g

Pr Wf g ;

and

Pr T jW� �
=

Pr W jT� �
Pr Tf g

Pr W
� � :

Since μ1, μ2, and μ3 are i.i.d., Pr Wf g = Pr W
� �

. So we only need to
show

Pr T jWf g N Pr T jW� �
:

Consider near ties between X1 and X2. The correction breaks near
ties in favor of X1 since σ1bσ2. Because σ1=0, X1=μ1, which is 7 or
10, and any near tie is near X1. A near tie with μ1=10 and μ2=7 is just
as likely as a near tie with μ1=7 and μ2=10; in either case, X2 is 3σ2

from μ2. However, for X1 and X2 to be a near tie for X⁎ requires X3 less
than X1 and X2. This is more likely when X1 and X2 are near 10 than
near 7. As a result, breaking ties in favor of X1 over X2 is more likely to
occur when X1=μ1=10 than when X1=μ1=7.
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Similar reasoning applies to near ties between X1 and X3. They
must occur with X1=μ1 at 7 or 10. If μ1≠μ3, then a near tie is equally

likely at 7 or 10, because both require X3 to be
3
2
σ3 from u3. However, a

near tie for X⁎ is more likely with X1=10 because it only requires X2

to be less than 10, which is more likely than X2 being less than 7.
Now consider near ties between X2 and X3. In Fig. 1, the dotted line

shows the pdf of near ties given μ2=10 and μ3=7. The dotted-and-
dashed line shows the pdf of near ties given μ2=7 and μ3=10.The
pdfs peak closer to μ2 than to μ3, because σ2bσ3. The pdfs are
reflections of each other around the midpoint 8.5 between 7 and 10.
Above 8.5, near ties are more likely the result of μ2=10 and μ3=7
than of μ2=7 and μ3=10. For a near tie between X2 and X3 to be a
near tie for X⁎, X1 must be below the near tie. This is a certainty above
10, where the near tie is more likely the result of μ2=10, and it is
impossible below 7, where the near tie is more likely the result of
μ2=7. (Between, it is 50%.) So breaking the near tie in favor of X2 is
more likely to select X2 when μ2=10 than when μ2=7.

4. Selection bias in display advertising

This section focuses on selection bias in display advertising, which
is the portion of online advertising with graphical ads rather than
text-only ads. (The next section focuses on text only ads, which
includesmost search engine advertising.) Subsection 4.1 discusses the
role of estimated offer values in display advertising. Subsection 4.2
explores how estimated offer values impact revenue. Subsection 4.3
uses simulated auctions to evaluate a correction for selection bias.

4.1. Display advertising and estimated offer values

Marketplaces for display advertising such as theRightMedia Exchange
host auctionswhere publishers sell ad calls – opportunities to advertise –
and advertisers buy them. Advertisers have a choice of price types,
including cost-per-impression (CPM), cost-per-click (CPC), and cost-per-
action or cost-per-acquisition (CPA). CPM offers pay when their ad is
displayed. (The abbreviation CPM represents cost per mille, or thousand
impressions; in this paper we treat CPM prices as per-impression prices.)

CPC andCPAoffers payonly if displaying the ad elicits a user response. For
CPC offers, the response is a user clicking on the ad. For CPA offers, the
advertiser specifies the response; examples include a user completing an
online purchase, filling out a form, or visiting a web page.

An auctioneer can use expected offer values to compare offers with
different price types. Let p⁎ be the response rate for each ad — the
probability that displaying the ad will elicit the user response required
for the advertiser to pay. For CPMoffers,p⁎=1.0. For CPCoffers,p⁎ is the
click-through rate. For CPA offers, p⁎ is the probability that the user will
complete the action specified by the advertiser. Let b be the bid amount,
the amount an advertiser pays for responses. Then the expected offer
value is bp⁎. The auctioneer's goal is to select an offer with maximum
bp⁎.

Since response rates p⁎ are unknown for CPC and CPA offers, the
auctioneer uses estimated response rates p. There are many methods to
estimate probabilities of clicks and conversions. The simplest method is
Bernoulli sampling,where the fraction of auctionwins that result in a click
or conversion is the estimated probability. Generally, methods beginwith
a prior based on results for similar ads and content. Then, Bernoulli
sampling is used to modify the estimated probability. In essence, most
methods try to “partially borrow” samples fromother ads and content, for
which there is plenty of data, and then tune the estimate based on actual
performance of the ad on the same or similar content. As samples
accumulate, the estimated probability is based more and more on
Bernoulli sampling. The following analysis focuses on Bernoulli sampling,
but thegeneralprinciples alsoapply tomore complexpredictionmethods.

Let p⁎ be the actual probability of action for a performance ad. Let p
be the estimate of p⁎ based on Bernoulli sampling. The estimate p has
a binomial distribution, with mean p⁎. If the ad is shown n times,
resulting in k actions, then

p≡ k
n
:

The estimate p is unbiased:

μ pð Þ = p⁎:

The variance is

σ2 pð Þ = np⁎ 1−p⁎
� �
n2 =

p⁎ 1−p⁎
� �
n

:

The standard deviation is

σ pð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⁎ 1−p⁎
� �
n

s
:

For click prediction, p⁎ is on the order of 0.01. For conversion
prediction, it can be on the order of 0.001. In both cases, the square
root of 1−p⁎ is very close to one. Also, for normal variables, the ratio

between mean absolute deviation and standard deviation is

ffiffiffi
2
π

r
≈0:8,

and we can apply this as an approximation for Bernoulli sampling.
Hence,

E
���p−p⁎

���h i
≈0:8

ffiffiffiffiffiffi
p⁎
n

s
:

Now consider how the estimation error in response rates affects
estimation error in expected offer values. There is no bias:

E bp−bp⁎
h i

= bE p−p⁎
h i

= 0:

4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

PDFs of Tied Estimates

x

pd
f

N(10,1)
N(7,2)
N(10,1)=N(7,2)
N(10,2)=N(7,1)

Fig. 1. The dotted line is the pdf for a tie between N (10,1) and N (7,2). (These two
distributions are shown for reference.) The other line is the pdf for a tie after swapping
means — a tie between N (7,1) andN (10,2). That pdf is a reflection of the first, around
the midpoint, 8.5. Each tie pdf peaks closer to the mean of the normal with the lower
standard deviation. So higher-valued ties are more likely when the higher mean has the
lower standard deviation.
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However,

E
���bp−bp⁎

���h i
= bE

���p−p⁎
���h i
≈0:8b

ffiffiffiffiffiffi
p⁎

p
ffiffiffi
n

p :

Consider this as a fraction of the actual expected offer value:

E

���bp−bp⁎
���

bp⁎

2
4

3
5≈0:8

1ffiffiffiffiffiffiffiffiffi
np⁎

p :

So the relative error due to estimation grows as p⁎ shrinks.
As a result, CPA ads are likely to have much less accurate estimates

than CPC ads. For example, with n=10,000 samples and p⁎=0.001
for a CPA ad, the estimated expected offer value is expected to differ
from the actual by about 25%. In contrast, for a CPC ad with p⁎=0.01
and the same number of samples, the expected relative error is only
about 8%. (For a CPM ad the relative error is 0%, since the probability of
payout is known with certainty.)

The gap in accuracy between CPA and CPC ads can be even worse
in practice than in these examples. Conversions for one ad may be
based on different actions than conversions on other ads. So using
conversions from one ad to estimate conversion probabilities for other
ads is usually less effective than doing so for click probabilities.

Another way to view the formula above is to keep relative error
constant, if the probability of action p⁎ shrinks by some factor, then
the number of auctions needed to learn p⁎ must grow by the same
factor. For our examples with p⁎=0.01 for CPC ads and p⁎=0.001 for
CPA ads, ten times as many learning auctions must be devoted to each
CPA ad as to each CPC ad in order to have the same expected relative
error for both.

4.2. How selection bias impacts display auction revenue

The auctioneer selects a winner by maximizing the estimated
expected offer value. Ideally, the auctioneer would select an offer that
maximizes actual expected value. This subsection examines how
using estimated rather than actual expected values impacts expected
revenue.

Let maximal expected revenue r⁎ be the revenue obtained by an
auction based on actual response rates, and let expected revenue r be
the revenue obtained based on estimates. Define revenue impact R to
be the portion of maximal expected revenue foregone by using
estimates:

R =
r⁎−r
r⁎

:

We use second-price auctions here and in simulations in the next
subsection. These auctions are common in online advertising (see
Varian (2006, 2009) and Edelman et al. (2007)), though they are not
necessarily revenue-optimizing (see Lahaie and Pennock (2007) and
Myerson (1981)). For general information on auction mechanisms,
refer to Milgrom (2004) or Krishna (2002).

For the auctions, let

w = arg max
i

bipi;

where i indexes offers, with bids bi and estimated response rates pi.
Offer w wins the auction. (In case of a tie, select w uniformly at
random from indices of tied expected payouts.) Let

s = arg max
i≠w

bipi:

Call offer s the second-place offer. The charge for the winning offer is

aw = min
psbs
pw

+
ε
pw

;bw

� 	
;

where ε is the minimum bid increment, usually $0.01. If offer w is a
CPM offer, then the advertiser is charged aw. For a CPC offer, the
advertiser is charged aw if the ad is clicked. For a CPA offer, the
advertised is charge aw if showing the ad elicits the specified response.

Let pw⁎ be the actual response rate for which pw is an estimate. Then
the expected revenue from the auction is

r = awpw⁎:

In our analysis, we will ignore the added ε in aw. Then

aw =
psbs
pw

:

So expected revenue is

r =
psbs
pw

pw⁎:

To compute maximal expected revenue r⁎, the expected revenue if
the auctioneer could select winning and second-place offers based on
actual response rates rather than estimates, define the maximal
winning index

w⁎ = arg max
i

pi⁎bi:

Define the maximal second-place index

s⁎ = arg max
i≠w

pi⁎bi:

Then the maximal expected revenue is

r⁎ =
ps4⁎ bs4
pw4⁎

pw4⁎ :

Since the actual response rates are unknown, it is not possible to
observe maximal revenue in real auctions. However, since responses
are observed for auction winners, it is possible to measure the average
difference between estimated and observed response rates for
winners. This difference between pw and pw⁎ , scaled by aw, is the
difference between estimated expected revenue when a winner is
selected and actual revenue received. In the RightMedia exchange, if
there were no corrections, the difference for CPA winners would be
about 20%. The difference for CPC winners would be less than 10%.

4.3. Correcting for selection bias

In this subsection, we use simulations to examine how much we
can improve revenue and selectivity by adjusting estimated offer
values for selection bias. We estimate the standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⁎ 1−p⁎
� �
n

s
;

by using the estimate p in place of (the unknown) p⁎. The adjusted
probability estimate is

p̂ = p−c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1−pð Þ

n

r
:
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We experiment with a variety of values for the coefficient c. In
practice, the coefficient c can be selected through empirical
observations and experiments to optimize some combination of
revenue and selectivity.

Figs. 2 and 3 show how the number of offers in each auction affects
revenue and selectivity with adjustments based on standard de-
viations. Both figures are based on the same simulations. For each
number of offers in 4,8,…,40, a different set of one million simulated
auctions is generated and used for all values of c. For each auction, the
specified number of offers are generated independently at random.
For each offer, whether it is CPM, CPC, or CPA is determined uniformly
at random. For CPM offers, p⁎=1.0. For CPC offers, p⁎ is drawn
uniformly at random from {0.005,0.01,0.02,0.05}. For CPA offers, p⁎ is
drawn uniformly at random from {0.0002,0.0005,0.001,0.002}. For all
offer types, the number n of simulated learning auctions is drawn
uniformly at random from {5,000,10,000,50,000,100,000}. Then the
estimated probability of action p is determined by drawing from a
binomial distribution based on p⁎ and n. Actual values are drawn at
random from a normal distribution with mean $1.00 and standard
deviation $0.10, and bids are set by dividing actual values by
probabilities of action p⁎.

Fig. 2 shows revenue impact, defined as the fraction of maximal
expected revenue lost due to using estimated probabilities:

R̂=
r⁎− r̂
r⁎

;

where r⁎ is the maximal expected revenue and r̂ is the expected
revenue when using p̂ to estimate response rates. Fig. 3 shows
selectivity, defined as the fraction of auctions won by the offer with
highest actual expected value. The values for c=0, on the y-axes, are
the baseline values achieved without bias correction. As c increases
from zero, revenue impact and selectivity improve smoothly. Then
further increases in c yield poorer results.

For each auction size, revenue-optimizing c values are close to
selectivity-optimizing values. The effects of optimal adjustments are
more pronounced for larger auctions, and optimal c values increase
with auction size. Even for optimal c values, the corrections leave
room for improvement: for large auctions, revenues are about 5% less
than maximal, and the best offer is selected in only about 50% of
auctions.

5. Selection bias in search advertising

This section focuses on text advertising, the type of online
advertising most commonly associated with search engines. Subsec-
tion 5.1 describes the slot auctions used for text advertising.
Subsection 5.2 uses simulations to examine the impact of adjusting
these auctions for selection bias.

5.1. The search advertising auction

In the search advertising auctions, there are multiple slots for ads
on each page and hence multiple auction winners. The auctioneer
orders offers by estimated expected offer value (breaking ties
randomly.) The most desirable slot is awarded to the first offer, the
second most desirable slot is awarded to the second offer, and so on.
The charge for each winning offer is based on the estimated expected
offer value of the next offer, with the intention of charging the first
winner the second price, the second winner the third price, and so on.
Typically, search auctions have only CPC pricing.

We will use notation similar to that for display auctions. As in
display auctions, for offer i, let bi be the bid, pi be the estimated
probability of action, and pi⁎ be the actual probability of action. Also,
the estimated expected offer value is bipi and the actual expected offer
value is bipi⁎.

We will use a generalized second-price auction model (Edelman
et al., 2007; Varian, 2009.) Let m be the number of offers, and let k be
the number of ad slots. For j∈{1,…,m}, let wj be the original index
i∈{1,…,m} of the offer in position j after ordering offers by estimated
expected offer value. For example,w1 is the index of the winner of the
first ad slot. Similarly, let wj⁎ be the original index i of the offer in
position j after ordering offers by actual expected offer value. Then
expected revenue is

r = ∑
k

j=1

bwj + 1
pwj + 1

pwj

pwj
⁎ :

Similarly, maximal revenue is

r⁎ = ∑
k

j=1

bwj + 1⁎ pwj + 1⁎⁎

pwj⁎
⁎

pwj⁎
⁎ = ∑

k

j=1
bwj + 1⁎ pwj + 1⁎⁎ :

As in display, define the revenue impact for search as

R =
r⁎−r
r⁎

:

In practice, response rates decrease as an ad moves from more to
less desirable slots. (See Varian (2006), Blumrosen et al. (2008),
Kempe andMahdian (2008); and Gomes et al. (2008) formore detail.)
For simplicity, we ignore this effect in our simulations. Including this
effect would increase the revenue impact from the early ad slots and
decrease the impact from the later slots. When the effect is strong, the
revenue from the top slot overwhelms the revenue from other slots,
resembling the single-slot display auction. When the effect is weak,
the effects on revenue resemble those in this section.
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5.2. Adjusting estimated probabilities

This subsection explores a method to increase revenue by
adjusting estimated probabilities in search auctions. The method
uses different adjustment coefficients c for different ad slots, because
top ad slots have more competing offers than subsequent slots. In
each case, each adjusted estimate p̂ is

p̂ = p−c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1−pð Þ

n

r
:

Let c=(c1,…,ck) be the sequence of c values for ad slots. Then the
auction procedure is as follows. Start with slot 1. Adjust probabilities
of action for all offers using c1. Order by adjusted estimated expected
offer values to determine a winner for the first slot and a charge based
on the second offer in the ordering. Remove the winner. Then repeat
this process, using c2 for the second slot, c3 for the third slot, and so on.

Define rd̂ to be the expected revenue using this procedure. Define

R̂d =
r⁎−rd̂
r⁎

to be the revenue impact.
Table 1 shows results of simulations to determine the revenue

impact. Each column is based on a set of 10,000 simulated five-slot
auctions. Each offer is generated independently, with:

• Actual value determined at random from a normal distribution with
mean $1 and standard deviation $0.10.

• p⁎ selected uniformly at random from {0.005,0.01,0.015,…0.05}.
• p drawn at random based on a binomial distribution simulating n
learning auctions, with n selected uniformly at random from {1,
000,2,000,3,000,…,10,000}.

For each column, an optimal value of c, called c⁎, is computed using
gradient descent over a different set of auctions than those used for
the results shown in Table 1.

In Table 1, for each number of offers, optimal adjustments are
greatest for the top slot and decrease from slot to slot, because
expected selection bias is greater when selecting a maximum than a
runner-up and so on. When selecting a minimum, expected selection
bias is negative. For six offers, the lower slots have negative optimal
adjustments. Selecting an offer among six for the fifth slot is similar to
selecting a runner-up for the minimum-value offer.

For each slot, optimal adjustments increase as the number of offers
increases, because expected selection bias increases with more
competition. In the bottom row of Table 1, as the number of offers
increases beyond ten, the value of using the adjustment increases.
(For six offers, the adjustment has a strong effect because it corrects
for the large negative bias in the lower slots.)

6. Conclusion

This paper explores the impact of using estimates of offer values in
an auction. Using estimates introduces a bias that can significantly
reduce revenue and selectivity. This paper also outlines a method to
correct for the bias, improving revenue and selectivity. The method
selects an auction winner based on a combination of estimated offer
value and an estimate of the estimation error.

The method in this paper has free parameters. To apply the
method in practice, it is possible to use simulations to select starting
points for the parameters. Then use statistical optimization tech-
niques, as in Box et al. (2005) to adjust the parameters, optimizing for
any desired combination of revenue and selectivity. Fortunately, the
simulations in this paper indicate that revenue-optimal parameter
settings are similar to selectivity-optimal ones.

Our simulations showed that optimal values of c depend on the
number of offers in each auction. This is similar to classical shrinkage
methods such as James–Stein estimation (James and Stein, 1961; Stein,
1955). Most shrinkage methods are designed to minimize average
error over the quantities being estimated; see for example Brown
(1966) and Bock (1975). For auctionswith a singlewinner, it would be
interesting to explore whether there are estimators that tend to select
the offer with highest actual mean directly, rather than first applying
shrinkage methods and then selecting the maximum estimate.

In practice, many auctions contain some offers that are not
competitive. Those offers should be removed before applying
corrections or shrinkage. Uncompetitive offers can be identified
using uniform error bound methods from machine learning, such as
Hoeffding (1963) bounds or Audibert et al.'s empirical Bernstein
(Audibert et al., 2007; Mnih et al., 2008) bounds. Offers with upper
bounds on value less than the maximum offer value lower bound can
be declared uncompetitive and removed.

When the response probability estimates are based on sampling, it
would be interesting to explore whether the method in this paper could
be improvedbyusingmore sophisticatedmethods toestimate confidence
intervals for binomial proportions than the technique based on sample
standard deviation used in this paper, which is called the normal
approximation interval. Some alternative methods are the Wilson score
interval (Wilson, 1927) and the Clopper–Pearson interval (Clopper and
Pearson, 1934). There are several papers that compare differentmethods,
such as Agresti and Coull (1998), Brown et al. (2001), and Ross (2003).

In general, it is possible to use any of a variety of machine learning
approaches to determine functional forms for the adjustments and set
parameters for those forms. Inputs can include the number of offers, their
estimated values, and any available information about the distributions
of actual values, such as how much frequencies of action have varied
over time for each offer or for sets of offers. Since online advertising
marketplaces hold many auctions, the amount of data needed for
machine learning approaches is available to them. One such approach
is to use Bayesian principles, basing adjustments on priors developed
using empirical data frompast auctions. For details on Bayesianmethods,
refer to Berger (1985), Duda et al. (1973), and Gelman (2004).

The simulations for search advertising auctions indicate that using
different correction factors for different ad slots can improve revenue
and selectivity. It would be interesting to explore whether a similar
tactic can improve methods to correct for uncertainty in portfolio
allocations for financial markets, as discussed in Jorion (1986), Jobson
et al. (1979), and Lintner (1965). For example, it may be useful to
apply one correction to all available investments, select one or a few

Table 1
Revenue impact in simulated search auctions.

Number of Offers

6 10 15 20 25 30

r* 4.87 5.20 5.38 5.48 5.55 5.61

c = 0
r 4.69 5.00 5.13 5.19 5.23 5.26

R 3.77 3.91 4.63 5.28 5.81 6.21

Variable c

c*

0.41

0.10

− 0.31

− 0.68

− 1.15

0.78

0.54

0.26

0.12

− 0.01

1.04

0.87

0.75

0.67

0.58

1.23

1.07

0.94

0.86

0.83

1.37

1.24

1.18

1.14

1.11

1.46

1.31

1.22

1.16

1.12

r̂ 4.72 5.01 5.15 5.23 5.29 5.33

R̂d 3.22 3.72 4.23 4.54 4.77 4.91

R − Rd
 ˆ 0.55 0.19 0.40 0.74 1.04 1.30
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investments to receive a portion of the resource allocation, remove
those investments, apply a weaker correction to those remaining, and
then select among them to receive the remaining resource allocation.

In the future, it would be interesting to examine interactions
between correcting for selection bias and bidding strategy. For
example, bidders may respond to corrections by choosing to submit
firmer bids, such as using CPM pricing instead of CPC or CPA. In this
case, though, bidders shift some risk from sellers to themselves, and
they also incur the computational burden of estimating response
probabilities. Alternatively, bidders may offer more than their actual
values initially to win auctions, generate responses, and reduce
uncertainty about their offer values. Then the bidders may reduce
their bids, using selection bias corrections as a barrier for competition.

Another direction for future work is to explore interactions
between learning, correcting for selection bias, and maximizing
revenue over time. Multi-armed bandit literature, including Gittins
(1979), Auer et al. (2002), and Audibert et al. (2007), examines
strategies to optimize revenue over time by awarding some wins to
offers with uncertain values now to reduce uncertainty about their
values in the future. In general, corrections for selection bias may
discourage learning by awarding more wins to offers with more
certain values. So it may be useful to select winners based on a
combination of selection bias correction and the value of learning.

Appendix A. Proof of Theorem 3.1

Proof. We want to show

∂r cð Þ
∂c

�����
c=0

N 0:

By the definition of a derivative,

∂r cð Þ
∂c

�����
c=0

= lim
c→0

1
c
r cð Þ−r 0ð Þ½ �:

By the definition of r() and linearity of expectations, this is

∂r cð Þ
∂c

�����
c=0

= lim
c→0

1
c
E μ arg max Xi−cσið Þ

i

− μ arg maxXi
i

" #
: ð1Þ

The difference between μ values is nonzero only if applying the
adjustment −cσ alters who wins:

arg max
i

Xi−cσið Þ≠ arg max
i

Xi:

Define Eij to be the event that the adjustment promotes Xj over Xi,
in other words, Xi=max(X1,…,Xn) and XjNXi−c(σi−σj). Ignore ties
for max(X1,…,Xn) because they have zero support, and ignore
intersections among Eij for different ij pairs because they have
probability O(c2) as c→0.

Note that Eij requires σjbσi. Let g() be the distribution of μ values.

Let f() be the standard normal pdf. (So 1
σi
f

Xi−μ i

σi

� 	
is the pdf for Xi.)

Integrate over μ i,μ j,and Xi:

∂r cð Þ
∂c

�����
c=0

= lim
c→0

1
c

∑
i;jð Þ:σjbσi

∫μ i
∫μ j

∫Xi
g μ ið Þg μ j


 � 1
σi

f
Xi−μi
σi

� 	

× μ j−μ i


 �
Pr Eij jμj;Xi

n oh i
dμ idμ jdXi:

ð2Þ

Note that

lim
c→0

1
c
Pr Eij

���μj;Xi

n o
= lim

c→0

1
c
Pr Xj∈ Xi−c σi−σj


 �
;Xi


 ����Xj∼N μ j;σj


 �n o

×Pr ∀k∉ i; jf g : XkbXif g

= σi−σj


 � 1
σj

f
Xi−μ j

σj

 !
∏

k∉ i;jf g
Pr XkbXif g:

So, from Eq. (2),

∂r cð Þ
∂c

�����
c=0

= ∑
i;jð Þ:σjbσi

σi−σj


 �
∫
μ i
∫
μ j
g μ ið Þg μ j


 �
μ j−μ i


 �

×∫
X i

1
σi

f
Xi−μi
σi

� 	
1
σj

f
Xi−μ j

σj

 !
∏

k∉ i; jf g
Pr XkbXif gdμi dμj dXi:

Let a=max(μ
i
,μ

j
) and b=min(μ

i
,μ

j
). Integrate over a and b:

∂r cð Þ
∂c

�����
c=0

= ∑
i;jð Þ:σjbσi

σi−σj


 �
∫
a
∫
bba

g að Þg bð Þ a−bð Þda db

×∫Xi

1
σj

f
Xi−a
σj

 !
1
σi

f
Xi−b
σi

� 	
− 1

σj
f

Xi−b
σj

 !
1
σi

f
Xi−a
σi

� 	" #

× ∏
k∉ i; jf g

Pr XkbXif g dXi:

The terms before the integral over X
i
are nonnegative, and they are all

positive for some values of i, j, and aNb. So to show the RHS is positive,
we only need to show that the integral over X

i
is positive for all i, j, and

aNb.

Define

pa xð Þ = 1
σj

f
x−a
σj

 !
1
σi

f
x−b
σi

� 	
;

pb xð Þ = 1
σj

f
x−b
σj

 !
1
σi

f
x−a
σi

� 	
;

and

m3 = max
k∉ i;jf g

Xk:

Then the integral over Xi becomes

D = ∫∞
x=−∞ Pr m3bxf g pa xð Þ−pb xð Þð Þdx:

The midpoint h = a + b
2 is an equal number of standard deviations

from the mean of Xj whether μ j=a or μ j=b. The same holds for Xi. So
pa(h)=pb(h). Also, since f(x)= f(−x):

∀s : pa h + sð Þ = pb h−sð Þ:

Center at h:

D = ∫∞
s =−∞ Pr m3bh + sf g pa h + sð Þ−pb h + sð Þð Þds:
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Fold at s=0:

D = ∫∞
s = 0

h
Pr m3bh + sf g pa h + sð Þ−pb h + sð Þð Þ + Pr m3bh−sf g

× pa h−sð Þ−pb h−sð Þð Þ
i
ds:

Use pa(h+s)=pb(h−s):

D = ∫∞
s = 0

h
Pr m3bh + sf g pa h + sð Þ−pb h + sð Þð Þ−Pr m3bh−sf g

× pa h + sð Þ−pb h + sð Þð Þ
i
ds:

Collect terms:

D = ∫∞
s = 0

pa h + sð Þ−pb h + sð Þ½ � Pr m3bh + sf g−Pr m3bh−sf g½ �ds:

For xNh, pa(x)Npb(x), so the first bracketed term is positive. (We
prove this as Lemma A.1 below.) For n≥3, the second bracketed term
is positive, because the cdf ofm3 is an increasing function. So DN0. ■

The proof shows that some adjustment based on standard
deviations increases expected revenue. In addition, it shows that
σjbσi implies μ jNμ i is more likely than μ \jbμ i, given that Xj and Xi are
nearly tied for max(X1,…,Xn). In other words, it shows that some
adjustment increases selectivity — the probability of selecting an offer
with maximum actual expected value.

Now we prove pa(h+s)Npb(h+s) for sN0:

Lemma A.1. Let σjbσi, aNb, h =
a + b

2
,

pa =
1

σjσi
f

x−a
σj

 !
f

x−b
σi

� 	
;

and

pb =
1

σjσi
f

x−a
σi

� 	
f

x−b
σj

 !
;

where f() is the standard normal pdf.
Then

∀s N 0 : pa h + sð Þ N pb h + sð Þ:

Proof. Let z1 =
jx−a j
σj

, z2 =
jx−b j
σi

, z3 =
jx−a j
σi

, and z4 =
jx−b j
σj

.

Since f(x)= f(−x), pa =
1

σjσi
f z1ð Þf z2ð Þ and pb =

1
σjσi

f z3ð Þf z4ð Þ.We

need to show f(z1)f(z2)N f(z3)f(z4). Using the standard normal pdf:

f z1ð Þf z2ð Þ = 1ffiffiffiffiffiffi
2π

p e−
1
2z

2
1

1ffiffiffiffiffiffi
2π

p e−
1
2z

2
1 =

1
2π

e−
1
2 z21 + z22ð Þ:

Similarly,

f z3ð Þf z4ð Þ = 1
2π

e−
1
2 z23 + z24ð Þ:

So we need to show z1
2+z2

2bz3
2+z4

2.
First consider the case h+ s≥a. Letm=a−h=h−b, and let d=

h+ s−a. Then z1 =
d
σj
, z2 =

2m + d
σi

, z3 =
d
σi
, and z4 =

2m + d
σj

.

So

z21 + z22−z23−z24

=
d2

σ2
j

+
2m + dð Þ2

σ2
i

− d2

σ2
i

− 2m + dð Þ2
σ2
j

=
4m
σ2
j σ

2
i

σ2
j −σ2

i
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m + dð Þ

h i
:

This is negative since d≥0, all other variables are positive, and σjbσi.
Now consider the case hbh+sba. Define m as before. Then

z1 =
m−s
σj

, z2 =
m + s
σi

, z3 =
m−s
σi

, and z4 =
m + s
σj

. So

z21 + z22−z23−z24

=
m−sð Þ2
σ2
j

+
m + sð Þ2

σ2
i

− m−sð Þ2
σ2
i

− m + sð Þ2
σ2
j

=
4ms
σ2
j σ

2
i

σ1
j −σ2

i

h i
:

This is negative since all variables are positive and σjbσi. ■
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