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Abstract There are around 400 advertising networks that match opportunities for
“display” advertising, which include banner ads, video ads and indeed all ads other than
text-based ads, on web pages and candidate advertisements. This is about a $25 billion
business annually. The present study derives a method of pricing such advertisements
based on their relative scarcity while ensuring that all campaigns obtain a reasonably
representative sample of the relevant opportunities. The mechanism is well-behaved
under supply uncertainty. A method based on the mechanism described in this paper
was implemented by Yahoo! Inc.
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There are around 400 advertising networks, as well as individual publishers, that
match opportunities for “display” advertising, which include banner ads, video ads
and indeed all ads other than text-based ads, on web pages. This is about a $25 billion
business annually. The present study derives a method of pricing such advertisements,
using randomized bidding, based on their relative scarcity, while ensuring that all
campaigns obtain a reasonably representative sample of the relevant opportunities.
The mechanism is well-behaved under supply uncertainty. A method based on the
mechanism described in this paper was implemented by Yahoo! Inc.
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The economic problem addressed by the present study arises when a seller—in our
application a publisher or website—with some degree of price-setting ability or market
power, has an extremely large variety of goods for sale and cannot control exactly the
product mix available. The key problem is the large variety of distinct goods for sale.
With a moderate to small number of goods, a seller would simply use the generalized
inverse-elasticity rule to set prices.! With today’s technologies, something on the order
of a million prices could be set this way, especially if the cross-price elasticity matrix
is block-diagonal or otherwise sparse. In the advertising setting, however, there are
trillions of distinct products; indeed modern advertising auctions now price each ad
seen by each individual on each page separately. Consequently, the pricing problem
requires simplification. This paper derives a practical mechanism that comes from
the solution to a reasonable optimization problem, and has useful properties, such as
handling supply uncertainty and implementation via an advertising exchange.

To describe the specific problem in more detail, we consider an online publisher,
such as Yahoo!, the Wall Street Journal, or the Huffington Post, who sells adver-
tising space on their pages. Ads and the space they occupy are both, confusingly,
known as impressions. Advertisers such as Proctor and Gamble or General Motors
buy guaranteed advertising campaigns from the publisher. These fix the number of
impressions, the time interval in which the impressions run, targeting criteria and
price. For example, Proctor and Gamble might buy a campaign aimed at women aged
30-45 in suburban locations, while a General Motors campaign for minivans targets
middle-income individuals likely to have children. Besides demographic targeting cri-
teria, these campaigns may come with additional requirements on the specific sites
(e.g. prohibiting email or comment pages) and other user characteristics (e.g. allowing
only users who visited an autos page in the past week).

When an advertiser purchases a guaranteed contract, often there will be many kinds
of content or inventory, the pages on which the ads may run, that can be used to satisfy
the contract. For example, a buyer of ten million impressions on autos.com may get
high-income males in Los Angeles or blind senior citizens in Fargo, ND. Automobile
advertisers are going to be unhappy if they mostly get the latter. On the other hand,
guaranteeing the specific quantities of each type of customer provides little leeway in
the event that demand or supply change, and supply varies substantially over time. A
key feature of the problem we address is that the seller cannot control the available set
of inventory at the time the campaign is run, but must instead allocate the inventory that
arises among the campaigns. Guaranteed advertising contracts should simultaneously
respect advertisers’ wishes to avoid poor quality opportunities, while providing the
seller with adequate flexibility to adjust to changing circumstances.?

A strategy for ensuring overall quality would be to provide representativeness across
all supply types. This is the strategy used by major websites historically; guaranteed
campaigns served first and thus received a relatively representative bundle of impres-
sions. Thus, a guaranteed display advertiser might be provided with a mix of locations,
with flexibility in the mix given to the network subject to some kind of budget. This

I The cleanest treatment of the inverse elasticity rule is Varian (1985).

2 The problem of display advertising is discussed in Babaioff et al. (2008), Boutilier et al. (2008), Contantin
et al. (2009) and Ghosh et al. (2009).
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solution sounds good in principle but encounters practical problems almost instantly.
Advertisers increasingly specify target audience attributes. These attributes include
standard demographic variables like age, gender, income, and geography. However,
many other targeting attributes are used, for example “interested in autos” as judged
by visits to auto-related web pages. Advertisers have created advertising campaigns to
show their advertisements only in cities where the sun is shining, and only when the
Dow Jones Industrial Average is higher than its previous close. Assigning a random
mix fails to use inventory strategically to meet a set of campaigns, because it does not
account for which inventory types are in short supply.

Detailed targeting creates “orphan categories”, in which no one is specifically inter-
ested; these categories come about because they have distinct groups of customers. For
example, if one advertiser buys ads based on “the sun is shining” and another based on
“the stock market is up”, four categories of inventory, each with distinct demand, are
created (e.g. stock market down and sun shining is one category). There are trillions of
such categories just based on demographics, geographic selection and interest-based
“behavioral” targeting created by a hundred campaigns, and large advertising net-
works handle hundreds of campaigns. Ostensibly all of these trillions of categories
must be priced to carry out a delivery mix based on pricing.> Unfortunately, it is not
practical to actually compute the prices of trillions of categories, nor is it sensible to
price categories in which no one is directly interested. Our mechanism is the only
existing methodology for pricing campaigns—sets of advertisements like “males in
California” or “people who live in cities in which the sun is currently shining”—that
avoids the need to price orphan categories and simultaneously ensures that advertisers
obtain as representative an allocation of inventory as is technically feasible.

For a concrete motivating example, consider a publisher that has 6M impressions to
sell, equally divided across those within and outside the US. The demand comes from
two advertisers, the first looking to buy 2M impressions in the US only, the second
looking to buy 3M impressions spread equally across all of the supply. How should
one price the two different supply types?

This paper starts by deriving “maximally representative allocations”. This produces
a parameterized family of demands. These demands aggregate simply and naturally
and lead to market prices by equating supply and demand. Moreover the pricing
system based on supply and demand is very well-behaved, and accommodates supply
uncertainty effectively.

1 Equilibrium pricing and targets

Consider an agency, publisher or network that has a set of supply pools of inventory.
Examples of supply pools could include “young men on auto pages” or “unknown
gender on a computer related news article”.

Index campaigns by superscripts. Campaign j specifies a quantity Y/ and a set of

eligible supply pools. A supply pool i is eligible for campaign j if sij =1, and sij =0

3 The problem of orphan categories arises in the literature on expressive bidding, exemplified by Boutilier
et al. (2008) and Agarwal et al. (2007).
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otherwise. (Subscripts are used to denote supply pools.) The variable sl.J also captures
the possibility that one might sell males, but deliver unknowns weighting them by the
likelihood of obtaining males. Thus, if 55 % of the pool “unknown gender” are males,
one can deliver males by providing “unknown genders” but only at the rate sl-] =55 %.
The following additional notation is convenient:

x; 1s the volume of supply pool i

r; is the minimum price for supply pool i,*

y/ is the amount of supply pool i that will go toward contract j, Y/ = >, s/ y/,
and

V/ is the priority or value attributed to campaign ;.

The objective we posit is to minimize the weighted squared distance of the within-
supply pool market shares from representative market shares. By representative shares,
we mean the values of the background population. For campaign j, the representative
vl] Xi

Jj )
ksk Xk

share of inventory type i is this is the proportion of the total feasible inventory

represented by the ith type.

The squared distance is chosen primarily for tractability and we will also investigate
the KL divergence (maximum entropy) as an alternate objective in a subsequent section.
The squared distance has useful properties in that the statistics of mean squared error
are well understood. Moreover, finding solutions to minimizing quadratics are possible

—ijs’i * to
87 Xi

make the solution independent of supply pool division,” and by V/ to reflect potentially
differential campaign weighting. (In practice the weights depend on the total spend
of the advertiser, the premium the advertiser offers over base-priced inventory, the
length of the contract and the quality of the advertisements as viewed by users.) The
campaign weights are V/Y/ to reflect that a campaign of twice the size should be
twice as important, or that merging two identical campaigns should not influence the

solution. Thus the objective function is

using fast algorithms. It is desirable to weight the squared deviations by

1 .. %slﬁxk s.jxl- s.jy.j ’
mmEZVJYJZ ; ’j — lYJ'l
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4 The role of ri is as a floor or reserve price. It is the minimum that should ever be accepted, and can be
thought of as the price that obtains by auctioning the impression in an exchange or the value of running a
“house ad” (an ad for the website’s own content) or a public service advertisement.

3 Otherwise merging two similar supply pools changes the objective function. Consider merging two supply
pools, with the same relative shares. The change in the objective function, using the proportional weights,

sy L w2 1 (ake_win) o _an (n_n)_g
x1 \X Y xp \ X Y X1+x2 X Y - Yz(x1+x2) X2 X1 -
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There are three kinds of constraints. The allocation must be feasible, meaning there
is adequate inventory in each supply pool. Mathematically this requires

Xi > Z yl.j , for every supply pool . 2)
J

Second, each campaign must meet its guarantee, requiring

Y/ = ZSZJ yij for all campaigns j. 3)

In addition, quantities are non-negative, creating a constraint
yij >0, foralliandj. 4)

Let p; be the Lagrangian multiplier (shadow value) on the inventory constraint (2)
and o/ be the multiplier on the campaign guarantee constraint (3). We will handle the
non-negativity constraint manually. The Lagrangian becomes:

| s A
min — viyJ s/ k ! _ L
R

2k Sli Xk

T OIE B (yf _zsgyg‘)
i Jj j i

We refer to the solution that minimizes (1) subject to (2)—(4) as the L? maximally
representative allocation.

Theorem 1 There are campaign shadow values p*/ and inventory prices p; such that
the maximally representative allocation is given by:

JyJ
STV 1 ; S
l_);l = Max 40, Vi le (Sijp*] — pl) 5)

Theorem 1 shows that the demand system under maximally representative alloca-
tions is linear. Moreover, given the values p*/, there is a closed form for the inventory-
specific prices. In particular, summing (5) over j,

. Y/ Xi _ .
xizzyijzzMax 0, J lJ (p*J_pi/S’!) ' ©
: , 4 > S] Xk
J J T k
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If x; > Zj Max {O, 5—], (zxi,- ) (p*j —r /sij)}, then p; = r;, and otherwise
’ & Sk Xk
pi is determined by

Y/

Zs,{xk
k

1 : ;
1=ZMax 0, Vi (p*]—p,-/sl-])
J

This equation solves for prices, given the list of p*/. The equation is piecewise linear
with the number of pieces equal to the number of campaigns. Thus, a problem with
potentially trillions of dimensions (pricing each supply pool) is reduced to a problem
with hundreds of dimensions in practice by maximally representative allocations.

The shadow prices are constrained to exceed an outside option r;. In essence, this
solution “sells” some of the capacity in an outside market if the shadow value p; would
otherwise fall below r;. The shadow prices are denominated in dollars and thus are
interpretable as actual prices to charge the buyer for that bucket of inventory.

Note that V/ allows weighting campaign j differently from other campaigns. The
value V/ measures how important a representative mix is for campaign j. For higher
values of V/, the importance of a representative mix is higher. The premium is beyond
the minimum prices r;, that is, the customer paying higher values of >, (p; — ri) yij
motivates a higher value of V/.

The price of a given supply pool enters in the form pi/sij and thus “penalizes”

supply pool i when the campaign can’t readily substitute; low values of sij entail high
effective prices. For example, a lipstick campaign that seeks only females might obtain
inventory from a mixed gender group, but only count impressions that reach females.
This counts showing impressions to the wrong group as having zero value, which is
reasonable if the wrong group does not find the ads offensive.

2 Practical implementation of the L? solution

The campaign pricing described above controls the allocation of each campaign with

a single variable, p*/. Prices for inventory are determined by a single piecewise linear

equation, either r; or 1 = Zj Max {O, % (Y—’,) (p*j —pi/ le) }, a piece-
SO\ 2k S Xk

wise linear expression decreasing in p;. The entire allocation process is controlled by

a vector equal to the number of campaigns. This is generally a much smaller number

than the number of inventory types, hundreds versus trillions.

Finding the solution to the maximal representative allocation problem is thus a
much lower dimensional problem and in fact is solvable in practice (see the work by
Bharadwaj et al. 2012) describing a simple combinatorial algorithm). In a subsequent
paper published earlier, Ghosh et al. (2009) show that the maximally representative
allocations can be implemented using randomized bidding in an exchange environ-
ment.® The basis for that solution is provided by manipulating Eq. (5), which can be

6 Beck and Milgrom (2012) also use an alternative randomized allocation, based on the gap between first
and second prices, to improve efficiency of the allocation.
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rewritten to look like a conditional bid. First note that the probability of obtaining

inventory 1s , which by Eq. (§) can be expressed as:

j *. .

: 1 jyi .
Y Max 0, — Lt (l—p,-/sl.]p*f)
X VIS s]x

k

Let kK minimize p; / sij p*/ over i such that sl.j > (. The minimized value pi /sj P o<

_ J *]
1 for otherwise the firm would obtain no inventory. By construction, 1=pi /s p™ ; > - <
1—px 51 P*-
Thus, we can rewrite (5) to be:
vl [ privi . 1= pi /sl pr

X VI S sixg 1 — pr / sip*
%

j i .
Yo 1 plyl _ j *])
Note as well that 1 > = Vi (—Zk - ,{xk) (1 Pk /S p Thus, L is written
as the product of two numbers, one of which is independent of i, and the other which
depends on p;. Both of these numbers are less than or equal to one and hence can be

interpreted to be probabilities.
By submitting a bid which is uniform on [slj pr | si.sip* ] , afirm wins with prob-

J *j_ o, . Joxj
ability Max IO, M] = Max IO, M ] Therefore, an imple-

si p*=s] pic/ i L=pi/sj p*/

J

mentation of acampaign exists where with probability % (ZP*J—W) (1 —pr /S ,ﬁ p* ) ,
k Sk Xk

a bid is drawn randomly from U [sl] Pk / slg , sij p* ] This implementation requires

knowing the eligibility sij of inventory in question but does not otherwise depend on
the inventory type and in particular does not depend on either x; or p;. Thus, when the
values p; are generated by an exchange (exogenous to an advertiser), there is an imple-
mentation of maximally representative allocations using a probability of submitting a
randomized bid into the exchange according to a uniform distribution.’

The demand system developed here has the gross substitutes property: an increase
in the price of item i decreases the demand y for item i and increases the demand yk
for other goods k. Adjustment mechanisms, known as Walrasian mechanisms, which
change the price proportionally to the excess demand >’ j yij — Xx;, are known to con-
verge to competitive equilibrium (excess demand =0), and moreover that equilibrium

7" The contribution of Ghosh et al. (2009) is to show how to rationalize a set of such campaigns that might
conflict with each other; in particular it could be necessary to divert inventory that one campaign loses to

another campaign. This in particular arises whenever 1 > z], % ( Z:p IYJ )(1 —pr/ s]{ p*j )
5] & Xk
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is unique. See Arrow et al. (1959) for the proof. Thus the system has a unique solution
and is well-behaved and readily computable.

3 A2 x 2 example

Recall the motivating example. Stated formally, there are two supply pools, 1 and 2,
each with 3M units of supply. Either supply pool sells for $1 per unit in the wholesale
market (r;). There are two buyers. Buyer 1 wants 2M from supply pool 1. Buyer 2
wants 3M units spread across both. Set V| = V> = 1.

It is possible to serve the entire demand at the reserve price, with buyer 1 getting
2M from supply pool 1, and buyer 2 getting 1 M from supply pool 1 and 2M from
supply pool 2.

By a routine calculation, the price of supply pool 1 is $1.67. The price is used to
shift the second buyer away from supply pool 1, so as to accommodate the focused
demand of buyer 1. Thus, the ability of buyer 1 to purchase an entire pool is limited
by the buyer paying for the distortion in allocation to buyer 2, and such price changes
are significant.

4 KL Divergence

The Kullback—Leibler (KL) divergence is a measure of deviation from an ideal dis-
tribution, and is closely related to maximum entropy (Csiszar 1991). Mathematically,
the KL divergence is

Z v/ z (sljylj log (ylj /xi) + sijx,- — sljyl]) (7)
J i

This objective function faces the same constraints (2)—(4). There is an important prop-

erty of the KL minimization:

Ifs/ >0, theny/ > 0. (8)

This property arises because lim,_,( (zlogz)’ = —o0, so that it is always desirable
to allocate a small bit of feasible inventory to each contract. Thus KL minimization is
always an interior solution, in contrast to the L? case where zeros will arise whenever

a contract value p*/ is lower than the effective price of the inventory p; / sl.] . As
a result, the Lagrangian method produces a nearly closed form solution for the KL
minimization problem. Let

L:ZVJZ(Sijyijlog(yi] /Xi)+sijx,-—sl.]yl.])+zpi Zyi’—xi
J - I

i
-l-Zaj(Yj —Zsijyij)
j i
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The solution for yij is

ST gU—.
j W(x.f “)
y; = xje i .

Here p; is the price of inventory of type i, and o/ is the shadow value of campaign ;.
These must sum to the overall campaign objective, which determines o/, so

—pi
j Js!

le xje Vs

W - —Pk

j Jst
> s,ixke VIsi
k

The KL objective function is convex. While it is generally not strictly convex, it has a
unique optimal allocation that is readily found through gradient descent. Consequently,
both the KL divergence solution and the L? objective are readily solved in practice.

5 Supply uncertainty

With supply uncertainty, the means by which the allocations are chosen become rel-
evant. We consider the situation where selection is fractional, that is, the publisher
dictates that a fraction of the inventory will be applied to various advertisers, and then
the supply is realized and the fractions executed. There are several reasons for focus-
ing on fractions. First, rotational schemes are not uncommon in practice. A rotational
scheme comes in the form “first impression to A, second impression to B, ...” and
implements a fractional allocation. Second, advertisers recognize a product some-
times known as “share of voice”, which contractually guarantees a certain fraction
of the impressions. Third, fractional allocation skirts the priority problem; otherwise
a publisher must determine which of the various advertisers get which parts of the
available inventory. Thus, fractional allocations have both mathematical simplicity
and real world relevance.

Let fij be the fraction of inventory i assigned to campaign j; in the previous

notation, fi] = yi] / xi. We can rewrite the KL objective function to obtain

VI (sl vog (! / xi) +s/xi = s!¥])
Jj i

= VI3 (o rfwton () + st o )

J

i

This objective function is linear in supply variables x;. Thus the KL divergence has
the same solution under uncertainty that it has under the expected value of the supply.
In practice, publishers may experience an asymmetric loss from failure to meet
the campaign quantity. This can be modeled by imposing the cost of not meeting the
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campaign quantity objective only when the allocation is too low. A penalty for over-
delivery already exists through the price of the inventory. This penalty consideration
induces a rewrite of the Lagrangian as:

L=V 3 () ftog (1) +slxi = s fix) + 3 pi [ X =
J i8>0 i J

+
+Zaj (Yj — Zsijfijxi)
j i

In this case, the solution comes in the form:

=1{ Pi _ .i)
. A Sy
i\ J
fij —e’ (Si

where v/ is the probability of not meeting the campaign objective times the penalty
al.

9

6 Conclusion

This paper develops a methodology for pricing supply pools of advertising opportu-
nities and allocating available inventory to campaigns. It has the distinct advantages
of straightforward computation and a pricing rule which reflects both scarcity and the
desire for a representative allocation. Representativeness is a useful property for much
the same reason that mutual funds are good investment vehicles; it reduces risk and
mitigates the problem of being assigned the worst possible inventory consistent with
the contract. This mitigation has the important advantage of encouraging advertisers
to provide flexibility to the network in choosing the locations of their advertisements.
Such flexibility is critical to actually being able to implement a set of advertising
campaigns.

A second advantage to the system is that the problem of pricing inventory and the
problem of inventory allocation to campaigns are considered as a single optimization
problem. While this integration is not special to maximally representative allocations,
and indeed could be operated in any pricing system, it is nevertheless extremely valu-
able. Integrating the allocations of inventory with the pricing of inventory permits the
pricing of campaigns to be consistent with the pricing of inventory, in other words, the
price charged to an advertiser can be a markup of the value of the inventory allocated.
Rather than using a “price first, allocate second” methodology common in the industry,
maximum representative allocations ensure that the pricing of campaigns reflects not
only the expected cost of the inventory but also a cost for the distortion of inventory
provided to other campaigns, by integrating the pricing and the serving plan.

A third advantage is that the implementation can be achieved by using a randomized
bidding mechanism. This means that the allocation can be achieved without ex ante
knowledge of the price of a particular piece of inventory, because the same bidding
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distribution works for all eligible inventory. Moreover, the distribution takes a partic-
ularly simple form, uniform for L? and exponential for KL. This ability to execute
the guaranteed plan through bidding in an exchange is advantageous because the pub-
lishers are increasingly integrating their guaranteed campaigns and sales of leftover
impressions via auctions.

Yahoo! implemented a version of this system in its display advertising serving
system, based on the analysis of this and subsequent papers.

Appendix

Proof of Theorem 1 The first order conditions, when sl.j > 0, come in the form

- Zijk
— — = +pi—sia/,ory; =0 and — > 0.
j Y/ X; : ¢ j
2 S X ! 9y;
k

0= —s.jVj

1

Thus,

Y Zs,{xk
k
and
0> 57 i 1 — M 9)
T st v
k

Let A/ = {i|y/ > 0}. Summing (9) over i € A/, and solving for &/ we obtain
Vi ZS,{ Xk 4 D icai Xi Di
k

ZSl-jxi

icAl

al =

-V, (10)

Substituting the value of o/ into (9), we obtain a solution for yij :

sivl _ [ sixa \(, _pilsi =
Y/ > s Xk v/
k

- j
) VIiSsia+ X xp
1 3 X; k icA

i
Vi Zs;gxk > sl.in
k

icAl

— pi/s! (11)
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Define

VIY sixk+ 2 xipi
k

icAJ

*j _
p’ = (12)
> six
icAl
Now, note that yij = 0 if and only if p; < sij p*/. Thus we have:
J.J J %] J
sy S x; Max]O, ] — p;/s:
lyj, - 2= [ pj PilSil (13)
Y > six Vv
k
Al ={ily! >0} ={ilpi < p¥}. (14)

This solution delivers quantities as a function of prices. The prices are endogenized
as follows. Recall that there is an exogenous price r; at which the guaranteed inventory
can be sold to the outside. Then the prices are given by complementary slackness—
either

pi =r; and xizZyij or p; >r; and xizz))ij. (15)
J J

References

Agarwal D, Papineni K, Tomlin J, Vudali M (2007) System and method for optimally allocating overlapping
inventory, United States Patent Appication 20090070177, filed Sept 2007

Arrow K, Block HD, Hurwicz L (1959) On the stability of competitive equilibrium, II. Econometrica
27(1):89-102

Babaioff M, Hartline JD, Kleinberg RD (2008) Selling banner ads: Online algorithms with buyback.
In: Workshop on Ad Auctions, Chicago, IL, USA

Beck M, Milgrom P (2012) Auctions, adverse selection and internet display advertising. available on
milgrom.net

Bharadwaj V, Chen P, Ma W, Nagarajan C, Tomlin J, Vassilvitskii S, Vee E, Yang J (2012) SHALE:
an efficient algorithm for allocation of guaranteed display advertising. In: Proceedings of the 18th
international conference on knowledge discovery and data mining (KDD)

Boutilier C, Parkes D, Sandhom T, Walsh W (2008) Expressive banner ad auctions and model-based online
optimization for clearing. In: National conference on artificial intelligence (AAAI)

Contantin R, Feldman J, Muthukrishnan S, Pal M (2009) Online ad slotting with cancellations. In: Fourth
workshop on Ad Auctions; symposium on discrete algorithms (SODA)

Csiszar I (1991) Why least squares and maximum entropy? An axiomatic approach to inference for linear
inverse problems. Ann Stat 19(4):2032-2066

Ghosh A, McAfee P, Papineni K, Vassilvitskii S (2009) Bidding for representative allocations for display
advertising. In: Proceedings of the 4th international workshop on internet and, network economics
(WINE)

Varian H (1985) Price discrimination and social welfare. Am Econ Rev 75(4):870-875

@ Springer



