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This paper considers equilibrium in transaction mechanisms. In an environment with ho-
mogeneous buyers and sellers, which eliminates the advantage auctions possess of matching
buyers and sellers, both auctions and bargaining are equilibria. However, only auctions are
evolutionarily stable. This identifies a new advantage of auctions over bargaining, arising
from the division of the gains from trade.Journal of Economic LiteratureClassification
Numbers: C78, C73, D44. © 1996 Academic Press, Inc.

1. INTRODUCTION

Beginning with Diamond (1971), a great deal of attention has been paid to
the microstructure of markets and trading institutions. The literature divides
naturally into four categories. The first category focuses on behavior in one
institution, e.g., Rubinstein and Wolinsky (1985). The second type restricts at-
tention to different types of auctions and compares them in an attempt to reveal
the intuition for why certain forms of auction are more frequently used in the
real world than the others (Milgrom and Weber, 1982; Milgrom, 1987). The
third type compares different institutions to determine the structural advantages
of certain institutions (Arnold and Lippman, 1995; De Vany, 1987; Ehrman and
Peters, 1993; Wang, 1993, 1995). The fourth type explores endogenous equi-
librium institutions (McAfee, 1993; Peters, 1994). This paper belongs to the
third group. We focus on auctions and bargaining as rival institutions. But, like
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the fourth category, we consider an explicit selection mechanism (evolutionary
stability) for the institution.

Auctions and bargaining are two very common trading institutions. Construc-
tion contracts, works of art, and fine wines are a few examples of goods and
services sold through auctions. Houses and cars, on the other hand, are usu-
ally sold through bargaining. In many situations, the goods sold through either
bargaining or auction institutions have similar properties: they are unique, ex-
pensive, and with uncertain equilibrium prices.

In many circumstances, auctions are superior to bargaining. By using a model
of monopoly with random matching heterogeneous buyers and the possibility
to resell, Milgrom (1987) pointed out that auctions often lead to an efficient
and stable outcome. McAfee and McMillan (1988) showed that a combina-
tion of reservation-price search and auction is, with costly communication, a
monopsonist’s optimal procurement mechanism when the potential sellers have
different production costs. In a more complicated, “near perfect competition”
situation, McAfee (1993) demonstrated that sellers holding identical auctions
and buyers randomizing over the sellers they visit comprises an equilibrium,
when all mechanisms are available to sellers (see also Peters, 1994).

The intuition that auctions have an inherent advantage over bargaining mech-
anisms with random matching among the players is straightforward. Auctions
have the ability to discriminate among buyers and choose the highest value buyer
(McAfee and McMillan, 1987; Milgrom, 1987).

In the absence of this advantage (e.g., homogeneous environments in which
buyers and sellers are all of one type), it is unclear whether auctions remain
superior to bargaining. It would appear that either institution could arise as
an equilibrium, since if all buyers bargain, every seller wishes to bargain, and
conversely.

This paper examines auctions and bargaining in homogeneous environments,
using an evolutionary framework. We find that although both auctions and bar-
gaining are equilibrium institutions, bargaining is unstable under a wide class of
evolutionary dynamics, and thus auctions tend to be selected as the only stable
equilibrium mechanism. The result suggests that auctions have an advantage
over bargaining mechanisms with random matching even without the ability of
sellers to discriminate among buyers and choose the highest value buyer.

The advantage auctions possess over bargaining concerns the division of the
surplus between buyers and sellers. An increase in the ratio of buyers to sell-
ers will disadvantage buyers in both transaction mechanisms. However, it will
disadvantage buyers relatively less in auctions as compared to bargaining in the
circumstances when buyers prefer auctions over bargaining, in a sense made pre-
cise below. The consequence of this differential distribution of the gains from
trade is circumstances (the ratio of buyers to sellers in auctions and bargaining,
respectively) where both buyers and sellers prefer auctions to bargaining. The
existence of such circumstances leads to the global stability of auctions.
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The remaining sections of the paper are organized as follows. In the next
section, we establish a model in which sellers can either hold auctions or bargain
and buyers participate in either auctions or bargaining. In Section 3, we show
that all agents choosing auctions or all agents bargaining are the only two steady
state equilibria in almost all circumstances. Then, in Section 4, we prove that
the unique globally stable equilibrium is for all agents to choose auctions. The
conclusion is in Section 5.

2. THE MODEL

There are two types of agents in the model, buyers and sellers. Each seller
has one unit of an indivisible good for sale and each buyer seeks to buy exactly
one unit of this good. All sellers are homogeneous in the sense that the goods
they sell, and the sellers’ values of the goods, are identical. All buyers are also
homogeneous in the sense that the consumption values of the good to the buyers
are the same, and normalized to unity. Each seller’s use value is set to zero; the
seller’s value of not selling, which is the discounted value of being a seller in the
next period, will arise endogenously.

Two separate markets exist simultaneously. One is an auction market and the
other is a bargaining market. Each seller can choose to either hold auctions or to
bargain, and simultaneously each buyer can choose to either attend an auction
or to match with a seller who bargains. It is assumed that once an agent enters a
market, the cost of transferring to the other is prohibitive. Thus, only new agents
change institutions.1

Time is discrete,t = 1, 2, 3, . . . . In each periodt , there areθt Nt + Nt agents
in the market, whereNt is a very large integer and 0< θt < +∞. Among
them,θt Nt are buyers andNt are sellers. We denote the proportions of buyers
and sellers in the bargaining market at timet by xt and yt . Consequently, the
proportions of buyers and sellers in the auction market at timet are 1− xt and
1 − yt .

At the beginning of each period, all buyers in each market are randomly spread
over the sellers, so that a buyer can match with at most one seller while a seller
may be visited by multiple buyers.2 The number of buyers visiting each seller
in either the bargaining or auction markets is a binomial random variable, with
parametersθt Nt xt and 1/Nt yt for the bargaining market, andθt Nt(1 − xt) and

1 Fixing the behavior of old agents simplifies the exposition. For the evolutionary dynamic to operate,
it is necessary that a fraction of agents do not switch to the market offering higher utility. The analysis
will presume that only an insignificant fraction of the total agents switch to the market offering higher
utility. This may require that some entering agents actually follow the behavior of their predecessors.

2 If the sellers have fixed locations and each buyer chooses a seller to visit simultaneously, this model
would arise in a symmetric equilibrium.
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1/Nt(1 − yt) for the auction market. SinceNt is a very large number, these
distributions can be well approximated by Poisson distributions with parameters
θt xt /yt andθt(1−xt)/(1−yt) respectively which hold exactly in the limit asNt →
∞. The successful buyers and the corresponding prices of trade are determined
through either auction or bargaining institutions. Once a trade is completed, the
buyer and the seller involved in the trade leave the market. Afterward a fraction
γ of the remaining buyers and sellers is terminated exogenously and the rest of
the agents will wait for an opportunity next period. At the end of the period,
new buyers and sellers come and join either the auction or the bargaining market
based on their market evaluations. It is assumed that buyers and sellers have the
same discount factorδ over the value one period ahead.

Despite having the same structure of the matching process, auction and bar-
gaining institutions produce different expected utilities. The distributions of the
stock buyers and sellers in the markets determine which market produces higher
utilities.

2.1.The Bargaining Market

In the bargaining market, we assume that each seller picks a buyer randomly
from the available buyers she matches if she happens to have multiple buyers.
Since the number of buyers for a given seller is a Poisson random variable with
parameterθt xt /yt , i.e.,

P{K = k} = e−θt xt /yt (θt xt /yt)
k

k!
(k = 0, 1, 2, . . .),

the probability that a seller has a bargaining partner equals 1− e−θt xt /yt . A buyer
may not have the chance to bargain even if he runs into a seller, depending upon
the existence of a competitor. If there arek (k ≥ 1) other buyers visiting the same
seller, the probability that he is chosen by the seller is 1/(k + 1). Consequently,
the probability that a buyer can actually find a seller to bargain with is

∞∑
k=0

1

k + 1

e−θt xt /yt (θt xt /yt)
k

k!
= yt(1 − e−θt xt /yt )

θt xt
.

We useU B
t and V B

t to denote the expected utilities of the buyers and the
sellers in the bargaining market. There are two types of discounting: that arising
from the threat of termination (probabilityγ ) and pure time preference. Both
are included in the discount factorδ. Thus, the gain from trade in the bargaining
market isGB

t = 1 − δU B
t+1 − δV B

t+1, whereδU B
t+1 andδV B

t+1 are the values of
not trading for the buyers and sellers, respectively. To concentrate on the subject
of interest and make the bargaining process as simple as possible, we assume
that the gain from trade will be split evenly between the buyer and the seller
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in bargaining, which is the outcome under Nash bargaining.3 Consequently, the
expected price of one unit of the good is

Pt = GB
t

2
+ δV B

t+1 = 1 − GB
t

2
− δU B

t+1.

When a buyer gets an opportunity to bargain with a seller, he will gain 1− Pt .
Otherwise he will wait with an expectation ofδU B

t+1. The expected utility of
a buyer in the bargaining market, therefore, satisfies the following dynamic
equation:

U B
t = yt(1 − e−θt xt /yt )

θt xt
(1 − Pt) +

(
1 − yt(1 − e−θt xt /yt )

θt xt

)
δU B

t+1

= GB
t

2

yt(1 − e−θt xt /yt )

θt xt
+ δU B

t+1. (1)

Similarly, the expected utility of a seller in the bargaining market can be
expressed as

V B
t = (1 − e−θt xt /yt )Pt + e−θt xt /yt δV B

t+1 = GB
t

2
(1 − e−θt xt /yt ) + δV B

t+1. (2)

2.2.The Auction Market

In the auction market, we assume that each seller is committed to sell the
good to the buyer with the highest bid, so long as the bid is not lower than the
reservation value.4 If there is a tie at the highest bid, the seller will break the tie
at random.

The number of buyers participating in an auction follows Poisson distribution
with parameterθt(1 − xt)/(1 − yt), i.e.,

P{K = k} =
e−θt (1−xt )/1−yt ( θt (1−xt )

1−yt
)k

k!
(k = 0, 1, 2, . . .).

A buyer at a particular auction faces two possibilities. The first is that he is the
only buyer in the auction. In this case, the optimal strategy for the buyer is to
bid at the reservation value of the seller. The second possibility is that there is at

3 See Rubinstein (1982) for a justification. A subtlety in applying Rubinstein’s model, pointed out
by a referee, is that it is not immediately obvious that the threat point should be the value of being a
trade in the next period. Effectively we have assumed that if negotiations break down, the traders are
forced to wait until the next period to bargain with another agent. See also Rubinstein and Wolinsky
(1985).

4 The reservation value is the value of the item to the seller. Since the use value of a seller is zero,
the reservation value is the present value of being a seller without selling this period, which isδV A

t+1.
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least one other buyer attending the same auction. In this occasion, competition
among buyers occurs. Indeed, a Bertrand game will be played among the buyers.
Because of the homogeneity of the buyers, the only solution to the game will be
that each buyer gets his reservation value regardless of who wins the bid. Denote
the expectation of the buyers and the sellers in the auction market byU A

t andV A
t

respectively, then the gain from trade in the auction market has an expression of
GA

t = 1 − δU A
t+1 − δV A

t+1, whereδU A
t+1 andδV A

t+1 are the reservation values of
the buyers and the sellers. The expected utility of a buyer in the auction markets
is described by the following equation:

U A
t = e−θt (1−xt )/(1−yt )(1 − δV A

t+1) + (1 − e−θt (1−xt )/(1−yt ))δU A
t+1

= e−θt (1−xt )/(1−yt )GA
t + δU A

t+1. (3)

As an auctioneer, a seller may obtain no buyers, just one buyer, or multiple
buyers in a given period. In the first two cases she gets only her reservation value.
If there are at least two buyers, competition occurs among buyers and the seller
gets 1− δU A

t+1. Thus, the expected utility of a seller in the auction market must
satisfy

V A
t = e−θt (1−xt )/(1−yt )

(
1 + θt(1 − xt)

1 − yt

)
δV A

t+1

+
(

1 − e−θt (1−xt )/(1−yt )

(
1 + θt(1 − xt)

1 − yt

))
(1 − δU A

t+1)

=
(

1 − e−θt (1−xt )/(1−yt )

(
1 + θt(1 − xt)

1 − yt

))
GA

t + δV A
t+1. (4)

The total value created by trade is the same under either auctions or bargaining
when the ratio of buyers and sellers is the same, because the matching technology
determines the number of matches and the value of 1 is created every time a
seller sells. However, auctions and bargaining distribute the gains from trade
differently. Consider a situation whereU A

t+1 = U B
t+1 andV A

t+1 = V B
t+1, that is, the

future value of being a buyer or seller is the same in the two markets, and thus the
gain from trade is the same in the markets,GA

t+1 = GB
t+1. Auctions reward sellers

well when two or more buyers appear at the seller relative to bargaining, and
poorly when exactly one buyer appears; thus the relative value of auctions over
bargaining depends on the relative likelihood of two or more buyers as compared
to one buyer. This difference has subtle consequences on any dynamic process
governing the choice of institution by buyers and sellers, as we show below.
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3. THE EQUILIBRIUM

Beginning with this section, we focus on a situation in which the ratio of stock
buyers to sellers is constant over time, i.e.,θt = θ (t = 0, 1, 2, . . .). Therefore,
by market evolution we mean the evolution of the distributions of both the buyers
and the sellers in the markets.

We define a steady state market equilibrium as the situation in which the
proportions of buyers and sellers in the auction and the bargaining markets are
constant all the time, i.e.,(xt , yt) = (x, y) (t = 0, 1, 2, . . .). We call such(x, y)

a market equilibrium. There are at most three types of market equilibria: (i)
(x, y) = (0, 0), i.e., all agents choose auctions; (ii)(x, y) = (1, 1), i.e., all
agents select bargaining; and (iii)(x, y) ∈ {(x, y) | 0 < x < 1, 0 < y < 1},
i.e., a fraction of the buyers and sellers chooses auctions and a fraction of buyers
and sellers selects bargaining. It is not difficult to observe that other candidates
for equilibrium are impossible. For example, if all sellers are holding auctions
while a portion of the buyers are participating in bargaining, then the expected
utility for buyers of auctions must be higher than that of bargaining (which in
fact is zero). Consequently, all newly arriving buyers would choose auctions
rather than bargaining which alters the distribution of buyers in the markets. In
other words, all sellers holding auctions while some buyers bargaining cannot
be a market equilibrium.

PROPOSITION1. For all θ (0 < θ < +∞), (x, y) = (0, 0) and (x, y) =
(1, 1) are market equilibria.

Proofs and derivations are relegated to the Appendix. Proposition 1 confirms
that the first two types are actually market equilibria. We explore the possible
third type market equilibrium.

At equilibrium,Ui
t = Ui andVi

t = Vi since(xt , yt) = (x, y), hence,Gi
t =

Gi , wherei = A, B. Under this circumstance, Eqs. (1)–(4) simplify to:

U B = 1

2(1 − δ)

y(1 − e−θx/y)

θx
GB, (5)

V B = 1

2(1 − δ)
(1 − e−θx/y)GB, (6)

U A = 1

1 − δ
e−θ(1−x)/(1−y)GA, (7)

V A = 1

1 − δ

(
1 − e−θ(1−x)/(1−y)

(
1 + θ(1 − x)

1 − y

))
GA. (8)

A necessary condition for a third type equilibrium is thatU B = U A and
V B = V A. By Eqs. (5)–(8), together with the fact thatGB = GA (sinceU B = U A
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andV B = V A), the condition is equivalent to

y(1 − e−θx/y)

2θx
= e−θ(1−x)/(1−y) (9)

and

1 − e−θx/y

2
= 1 − e−θ(1−x)/(1−y)

(
1 + θ(1 − x)

1 − y

)
, (10)

where 0< x < 1 and 0< y < 1.

PROPOSITION2. Let θ0 be the solution to the equation eθ − 1 = 2θ . Then,
whenθ 6= θ0, there is no third type equilibrium; whenθ = θ0, {(x, y) | 0 < x =
y < 1} may also be equilibria.

Equations (9) and (10) are necessary conditions for(x, y) (0 < x < 1 and 0<

y < 1) to be a market equilibrium. Whenθ 6= θ0, Eqs. (9) and (10) have no
solution. This implies that all agents choosing auctions and all agents bargaining
are the only two market equilibria. Whenθ = θ0, Eqs. (9) and (10) possess an
additional solution set{(x, y) | 0 < x = y < 1}. Note that{(x, y) | 0 < x =
y < 1} are market equilibria provided that whenU B = U A andV B = V A the
newly arriving agents choose the markets in such a way that the distributions
of buyers and sellers in the markets remain the same. Since new agents are
indifferent, this is consistent with optimization. Thus, for all but one value ofθ ,
there are two equilibria. One equilibrium involves all parties bargaining, and it is
supported by the absence of trades in the auction market. The other equilibrium
involves all parties employing auctions, and it is supported by the absence of
trades in the bargaining market.

While both of these equilibria are self-reinforcing, they depend critically on
the assumption of unilateral deviations in defining equilibrium. One might rea-
sonably ask whether small multilateral variations will break one of the equilibria,
thereby selecting the other. A natural way to pose this question is by imposing an
evolutionary dynamic, so that agents respond to utility variations “slowly,” and
then inquire about the stability of the equilibria under perturbations. It turns out
that, under a wide class of evolutionary dynamics, auctions are globally stable.

4. STABILITY OF THE EQUILIBRIA

In what follows we analyze the dynamic properties of the market equilibria.
We consider a situation in which the newly arriving agents expect the utilities
in the next period to be the same as those of the present period (Ui

t+1 = Ui
t and

Vi
t+1 = Vi

t (i = A, B)), and the ratio of stock buyers to sellers to be stable across
time (θt = θ).
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These assumptions induce a notion of evolutionary stability. Existing agents
remain in the market they chose when new. New agents look at the current
matching probabilities and payoffs and choose the market with the highest utility.
New agents behave myopically; they assume incorrectly that current payoffs
will prevail when in fact the system will evolve. Consequently, the proportion
of agents in a market with higher utility in the current period will increase while
the proportion of agents in a market with lower utility will decrease. This is a
standard evolutionary dynamic (Nachbar, 1990).

In what follows, we ignore the discreteness of the periods in determining the
evolutionary dynamic and assume that the size of the entering cohort is small,
so that the dynamic is not driven the “step size”. As our referees observed, the
assumption of small step sizes may be inconsistent with the matching technology,
as the matching technology may result in a significant number of exits from the
system, and thus steady state requires a significant number of entrants. There
are two easy ways to confront this. First, with a discrete number of entrants,
most could be required to follow the behavior of departing agents according to
their population proportion, with only an insignificant number free to choose the
market offering higher rents. A more interesting approach is to limit the number
of agents involved in matches, hence reducing the portion of the population
that exits. For example, let a fractionσ of the population be “active” in a given
period, with inactive agents prohibited from matching. Provided that being active
is statistically independent of choices and agent types, the model evolves as
before. As the rate of matching is slowed down, agents will discount the future
more heavily. In particular, the discount factorδ must not exceedσ provided
there is pure time preference.5

Under the assumptions, the expected utilities given in (1)–(4) simplify to

U B
t = 1

2(1 − δ)

yt(1 − e−θxt /yt )

θxt
GB

t , (11)

V B
t = 1

2(1 − δ)
(1 − e−θxt /yt )GB

t , (12)

U A
t = 1

1 − δ
e−θ(1−xt )/(1−yt )GA

t , (13)

V A
t = 1

1 − δ

(
1 − e−θ(1−xt )/(1−yt )

(
1 + θ(1 − xt)

1 − yt

))
GA

t , (14)

5 A third alternative involves examining the discrete step size directly. Note that the characterization
of utility levels, as represented by Fig. 2, is unchanged. Therefore, providedθ 6= θ0, bargaining remains
unstable even under discrete step sizes. However, the stability of auctions is now called into question,
and in fact, equilibrium cycles may emerge.
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which depend solely on the distributions of the buyers and the sellers in current
period.

WhenU B
t = U A

t , or

yt(1 − e−θxt /yt )

θxt

GB
t

2
= e−θ(1−xt )/(1−yt )GA

t , (15)

the buyers are indifferent as to whether they participate in auctions or bargaining.
We call Eq. (15) the equilibrium curve for buyers. Similarly, whenV B

t = V A
t ,

or

(1 − e−θxt /yt )
GB

t

2
=
(

1 − e−θ(1−xt )/(1−yt )

(
1 + θ(1 − xt)

1 − y

))
GA

t , (16)

the sellers are indifferent between holding auctions and bargaining. We call
Eq. (16) the equilibrium curve for sellers. By noting the definitions ofGA

t and
GB

t , Eqs. (15) and (16) can be expressed as (see Appendix for derivation):

(yt /θxt)(1 − e−θxt /yt )

2(1 − δ) + δ(1 + yt /θxt)(1 − e−θxt /yt )

= e−θ(1−xt )/(1−yt )

1 − δe−θ(1−xt )/(1−yt )θ(1 − xt)/(1 − yt)
, (17)

1 − e−θxt /yt

2(1 − δ) + δ(1 + yt /θxt)(1 − e−θxt /yt )

= 1 − e−θ(1−xt )/(1−yt )(1 + θ(1 − xt)/(1 − yt))

1 − δe−θ(1−xt )/(1−yt )θ(1 − xt)/(1 − yt)
. (18)

Note that(xt , yt) will evolve over time as a result of trade, termination, and
participation of new buyers and sellers. However, because the ratio of the entire
stock of buyers to sellers is constant(θt = θ), both the equilibrium curve for
buyers and the equilibrium curve for sellers will be fixed along any time path.

The analysis of the equilibrium curves is fundamental to characterizing the
evolutionary stability of the equilibria; we perform this analysis using four lem-
mas.

LEMMA 1. On both the equilibrium curve for buyers and the equilibrium
curve for sellers, x is positively related to y.

Lemma 1 is not surprising. For instance, suppose sellers are indifferent to par-
ticipating in auctions or bargaining at(x0, y0). An increase in the proportion of
buyers in the bargaining market will increase the sellers’ likelihood of meeting
a buyer in the bargaining market and decrease the probability of having multiple
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buyers in auctions, therefore increasing the expected utility of sellers in bargain-
ing and decreasing the expected utility of sellers in auctions. To offset the effect
of such an increase inx and keep the sellers indifferent between participating in
auctions and bargaining, a corresponding increase iny is necessary.

For 0< δ < 1, letθ1 be the solution toeθ − δθ = 2− δ, andθ2 be the solution
to eθ −2θ = (2−δ)/(1−δ). It is straightforward to show thatθ1 < 1 < θ0 < θ2.

LEMMA 2. (a) Both the buyers’ and sellers’ equilibrium curves include(1, 1)

for all 0 < θ < +∞;
(b) the buyers’ equilibrium curve includes(0, y), for some y∈ (0, 1) when

θ < θ1, and(0, 0) whenθ ≥ θ1;
(c) the sellers’ equilibrium curve includes(x, 0), for some x∈ (0, 1) when

θ > θ2, and(0, 0) whenθ ≤ θ2.

Lemma 2 shows that for allθ ∈ (0, +∞), the “upper right end” (see Fig. 1) of
both the buyers’ and sellers’ equilibrium curves is(1, 1). However, the limit of the
“lower left end” of the buyers’ and sellers’ equilibrium curves differ, depending
upon the values ofδ andθ (note thatθ1 andθ2 depend onδ). By Lemma 2, the
relative position of the lower left ends of the buyers’ and the sellers’ equilibrium
curves can be classified into three categories. (1) Forθ < θ1, the lower left end
of the buyers’ equilibrium curve is(0, y) (0 < y < 1) while the lower left end
of the sellers’ equilibrium curve is(0, 0); (2) for θ1 ≤ θ ≤ θ2, the lower left ends
of both the buyers’ and sellers’ equilibrium curves are(0, 0); (3) for θ > θ2, the
lower left end of the buyers’ equilibrium curve is(0, 0) while the lower left end
of the sellers’ equilibrium curve is(x, 0) (0 < x < 1). Whenθ = θ0 the lower
left ends of both the buyers’ and sellers’ equilibrium curves converge to(0, 0).

An intuition, provided by a referee, arises for Lemma 2 by considering a vio-
lation of Lemma 2’s claims. Suppose, for example, that the buyer’s equilibrium
curve included(1, y) for y < 1, so that all buyers bargain, but a portion of the
sellers go to an auction. This is inconsistent with indifference by the buyers:
clearly a buyer going to the auction market would extract all the surplus (facing
no competition), while a buyer going to bargaining must split the surplus. The
case(x, 1) and the sellers’ equilibrium curves are similar.

Now, to see why a point like(0, y) for y > 0 might be on the buyers’ equi-
librium curve, note that(0, y) posits all buyers going to auctions, while some
sellers bargain. Suppose thatθ is small, so that there are few buyers overall; thus
for most of the auctions, there will be only a single buyer who extracts all the
surplus. Should a buyer instead go to bargaining, this buyer must split the surplus
with a seller, which results in less than full rent extraction by the buyer. There-
fore, provided that there are not many buyers overall (technically, this works out
to θ < θ1), it is possible to equalize the surplus that buyers obtain in auctions
with that obtained by buyers going to bargaining, even when the buyers are alone
in the auction arena. The case of(x, 0) for x > 0 and the sellers’ equilibrium
curve is analogous.
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FIGURE 1

LEMMA 3. Let0 < δ < 1, then

(a) whenθ 6= θ0, the buyers’ equilibrium curve always lies above the sellers’
equilibrium curve;

(b) whenθ = θ0, both the buyers’ and the sellers’ equilibrium curves coin-
cide with the45◦ line.

The properties of the buyers’ and the sellers’ equilibrium curves are illustrated
in Fig. 1, where BE represents the buyers equilibrium curve and SE stands for
the sellers’ equilibrium curve.

Lemma 3(a) is the central theoretical development of this manuscript, in that
the major economic results follow from it in a straightforward manner. From
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Proposition 2, note that buyers’ and sellers’ equilibrium curves do not intersect
in the interior of the unit square, provided thatθ 6= θ0. Note as well that these
curves are continuous inx, y, andθ . From Lemma 2(b), the buyers’ curve lies
above the sellers’ curve for sufficiently smallθ . From Lemma 2(c), the buyers’
curve also lies above the sellers’ curve for sufficiently largeθ . As a consequence
of continuity, then, the buyers’ curve lies above the sellers’ curve for allθ 6= θ0.

Moreover, it is intuitive that buyers prefer auctions to bargaining whenever
the state(x, y) is below the buyers’ equilibrium curve, since this state represents
more buyers bargaining than the level which would equalize utility. Similarly,
sellers prefer auctions whenever the state lies above the sellers’ equilibrium
curve. We formalize this in the next result.

LEMMA 4. (a) U B
t < U A

t in the area below the buyers’ equilibrium curve,
and UB

t > U A
t in the area above the curve;

(b) V B
t > V A

t in the area below the sellers’ equilibrium curve, and VB
t < V A

t
in the area above the curve.

The buyers’ and sellers’ equilibrium curves divide the unit square into three
areas. Northwest of the buyers’ curve, buyers prefer bargaining and sellers prefer
auctions. Between the buyers’ curve and the sellers’ curve, both types prefer
auctions. Finally, southeast of the sellers’ curve, buyers prefer auctions and
sellers prefer bargaining. The intermediate region is degenerate whenθ = θ0,
and not otherwise.

The existence of the intermediate region is interesting. Consider the case
θ < θ1, illustrated in Fig. 1a; both the buyers’ equilibrium curve and the sellers’
equilibrium curve lie above the 45◦ line (on which the ratio of buyers to sellers
is the same). Above the 45◦ line, there are fewer buyers per seller in bargaining
than in auctions. Thus auctions are producing more gains from trade per seller.
However, the distribution of this increased surplus is such that both buyers and
sellers are better off under auctions.

The expected utilities are indicators of the profitability in the bargaining mar-
ket and in the auction market. The relative magnitude of the expected utilities
dictates the market selection decisions of new agents, and therefore determine
the direction of the movement of the stock distributions of buyers and sellers.
Northwest of the buyers’ equilibrium curve,U B

t > U A
t andV B

t < V A
t , therefore,

all newly arriving buyers will choose to bargain while all newly arriving sell-
ers will choose to hold auctions, which increases (decreases) the proportion of
buyers in the bargaining (auction) market (xt+1 > xt ), and increases (decreases)
the proportion of sellers in the auction (bargaining) market (yt+1 < yt ). In the
region between two equilibrium curves,U B

t < U A
t andV B

t < V A
t , all new buy-

ers and sellers will choose auctions, which increases (decreases) the proportion
of buyers and sellers in the auction (bargaining) market (xt+1 < xt , yt+1 < yt ).
Southeast of the sellers’ equilibrium curve,U B

t < U A
t andV B

t > V A
t , therefore,

all newly arriving buyers will participate in auctions while all newly arriving sell-
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FIGURE 2

ers will choose to bargain, which increases (decreases) the proportion of buyers
in the auction (bargaining) market (xt+1 > xt ), and increases (decreases) the
proportion of sellers in the bargaining (auction) market(yt+1 < yt ). Finally, if it
happens that(xt , yt) is just on the buyers’ equilibrium curve, that is,U B

t = U A
t

and V B
t > V A

t , thenxt+1 = xt and yt+1 < yt ; if (xt , yt) is just on the sell-
ers’ equilibrium curve, that is,U B

t < U A
t andV B

t = V A
t , thenxt+1 < xt and

yt+1 = yt .
The dynamic properties of the distributions of the agents in the markets dis-

closed by Lemma 4 is displayed in Fig. 2.
Now we turn to analyzing the stability of the equilibria. In Section 3, we have

already shown that whenθ 6= θ0, all agents choosing auctions and all agents
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FIGURE 3

selecting bargaining are the only market equilibria; whenθ = θ0, {(x, y) | 0 <

x = y < 1} are also market equilibria. However, not all of these equilibria are
evolutionarily stable.

PROPOSITION3. (a) Whenθ 6= θ0, all agents choosing auctions is the unique
stable equilibrium;

(b) whenθ = θ0, there is no locally stable equilibrium.

Proposition 3 indicates that all sellers holding auctions while all buyers par-
ticipating in auctions is the unique globally stable equilibrium for all but oneθ .
In this sense, the auction institution is preferred to the bargaining institution.

The stability of auctions is illustrated in Fig. 3 for the caseθ < θ1. The dynamic
paths cross the buyers’ equilibrium curve headed down, withx constant since a
buyer’s utility is the same in both institutions. Similarly, the dynamic paths cross
the sellers’ equilibrium curve horizontally. Once between the buyers’ and the
sellers’ equilibrium curves, the path never escapes this region. The other cases
are similar.

It is worth noting that the model is robust to the threat of exit, provided
that this threat is not too large. For example, suppose that buyers and sellers
possess reservation utility levels, and if they fail to achieve these levels, exit
with positive probability. Clearly, for low reservation utilities, the stability of
auctions and instability of bargaining persists. If there were a distribution of
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reservation utility levels uncorrelated with other elements of the model, exits
would actually enhance the stability of auctions over bargaining in the middle
region of Fig. 3, for in this region the bargaining market would suffer more
exits for both buyers and sellers. In general, exits merely increase the speed of
the system’s evolution without changing its direction; therefore stability is not
overturned when exits are permitted, provided that the increase in speed is not
sufficient to produce discrete steps which admit the possibility of equilibrium
cycles.

5. CONCLUSION

In this paper, we develop a model in which homogeneous agents have the
ability to choose between the market institutions. While both auctions and bar-
gaining are equilibrium institutions, auctions turn out to be the unique institution
stable under a wide class of evolutionary dynamics. This result implies that auc-
tions are superior to bargaining even without the ability of sellers to choose the
highest value buyer.

Our results suggest that the auction institution will dominate in the end in
a market where factors such as transaction costs of both auctions and bargain-
ing are the same, even if both auction and bargaining institutions are currently
prevalent. On the other hand, in markets where bargaining persists, there must
be some factors which make bargaining preferable to auctions. The effects of
such factors must be strong enough to override the structural advantages of auc-
tions. The major factor in favor of bargaining is the ability of a seller to price
discriminate based on observations about the buyers’ characteristics. For exam-
ple, an automobile dealer may offer prices that depend on the buyers’ accent; in
contrast, auctions are anonymous. Bargaining may also be advantageous when
buyers arrive stochastically over time and it is costly to assemble several buyers
in the same place, although this does not prohibit the use of sealed-bid auctions,
of course. In addition, bargaining may offer the opportunity to alter the terms
of the deal; for example, house buyers may bargain over whether a chandelier
conveys (that is, comes with the house), while such individualized transactions
would be difficult in an auction context.

APPENDIX

Proof of Proposition1. When all stock agents are playing auctions, all newly
arriving agents will participate in auctions instead of bargaining since the ex-
pected utility of auctions is higher than that of bargaining. Therefore, once
(x, y) = (0, 0) has been reached, there is no tendency to move from it. Similar
argument can be applied to(x, y) = (1, 1).
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Proof of Proposition2. We need to prove that for all 0< θ < +∞, 0 <

x < 1, and 0< y < 1, Eqs. (9) and (10) have the solution set{(x, y, θ) | 0 <

x = y < 1, θ = θ0}. We first prove thateθ − 1 = 2θ has a unique solutionθ0 in
(0, +∞).

Sinced2(eθ − 1)/dθ2 > 0 andd2(2θ)/dθ2 = 0, the equation has at most two
solutions. Zero is obviously one solution so that there is at most one solution in
(0, +∞). On the other hand, since limθ→+∞((eθ−1)/2θ) = +∞andeθ−1 < 2θ

atθ = 1, it has at least one solution in(1, ∞). In conclusion, the equation has a
unique solution in(1, ∞), denotedθ0.

Let X = θx/y andY = θ(1 − x)/(1 − y), then Eqs. (9) and (10) become

1 − e−X

2X
= e−Y, (19)

1 − e−X

2
= 1 − e−Y(1 + Y). (20)

We first prove that Eqs. (19) and (20) have a unique solution.
Solving the first equation forY and then substituting forY in the second

equation we get

1 − e−X

2
= 1 − 1 − e−X

2X

(
1 − ln

1 − e−X

2X

)
.

Let

f (X) = 1 − 1 − e−X

2X

(
1 − ln

1 − e−X

2X

)
− 1 − e−X

2

= 1 − 1 − e−X

2X

(
1 + X − ln

1 − e−X

2X

)
,

then

eX f (X) = eX − eX − 1

2X

(
1 + X − ln

1 − e−X

2X

)

= eX − eX − 1

2X

(
1 + 2X − ln

eX − 1

2X

)

= 1 − eX − 1

2X

(
1 − ln

eX − 1

2X

)
.

Let g(Z) = 1 − Z(1 − ln Z), sincedg(Z)/d Z = ln Z andd2g(Z)/d Z2 = 1/Z
> 0, for all Z > 0, g(Z) reaches its minimum (zero) atZ = 1. Thus,eX f (X) ≥
0, the equality holds only ifX satisfies(eX −1)/2X = 1. We already proved that



EVOLUTIONARY STABILITY OF AUCTIONS 245

suchX exists, is unique, and is equal toθ0. SinceeX is positive for allX > 0,
we conclude thatf (X) ≥ 0 for all X > 0. The equality holds only ifX equals
θ0.

When X = θ0, Y = − ln((1 − e−θ0)/2θ0) = θ0 = X. Since X = θx/y
andY = θ(1 − x)/(1 − y), we havex/y = (1 − x)/(1 − y) or x = y, and
θ = θx/y = X = θ0. In other words, Eqs. (9) and (10) have a solution set
{(x, y, θ) | 0 < x = y < 1, θ = θ0}.

Derivation of Equations(17)and(18). Since

GB
t = 1 − δU B

t − δV B
t = 1 − δ

2(1 − δ)

(
1 + yt

θxt

)
(1 − e−θxt /yt )GB

t ,

or

GB
t = 1/

(
1 + δ

2(1 − δ)

(
1 + yt

θxt

)
(1 − e−θxt /yt )

)
,

and similarly

GA
t = 1 − δU A

t − δV A
t = 1 − δ

1 − δ

(
1 − e−θ(1−xt )/(1−yt )

θ(1 − xt)

1 − yt

)
GA

t ,

or

GA
t = 1/

(
1 + δ

1 − δ

(
1 − e− θ(1−xt )

1−yt
θ(1 − xt)

1 − yt

))
,

the expected utilities can be expressed as

U B
t = (yt /θxt)(1 − e−θxt /yt )

2(1 − δ) + δ(1 + yt /θxt)(1 − e−θxt /yt )
, (21)

V B
t = 1 − e−θxt /yt

2(1 − δ) + δ(1 + yt /θxt)(1 − e−θxt /yt )
, (22)

U A
t = e−θ(1−xt )/(1−yt )

1 − δe−θ(1−xt )/(1−yt )θ(1 − xt)/(1 − yt)
, (23)

V A
t = 1 − e−θ(1−xt )/(1−yt )(1 + θ(1 − xt)/(1 − yt))

1 − δe−θ(1−xt )/(1−yt )θ(1 − xt)/(1 − yt)
. (24)

Therefore, the equilibrium curves for buyers and sellers can be described by
Eqs. (17) and (18).

Proof of Lemma1. We need to show thatdy/dx > 0 for both equilibrium
curves. We omit the time index ofx andy since both curves are time invariable.
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(a) Equation (17) is equivalent to

y

θx
(1 − e−θx/y)

(
e−θ(1−x)/(1−y) − δ

θ(1 − x)

1 − y

)
= 2(1 − δ) + δ

(
1 + y

θx

)
(1 − e−θx/y).

Totally differentiating both sides of the equation we get

xdy− ydx

x2
A + ydx− xdy

y2
B + −(1 − y)dx + (1 − x)dy

(1 − y)2
C = 0,

where

A = (1 − e−θx/y)

θ

(
eθ(1−x)/(1−y) − δ

(
1 + θ(1 − x)

1 − y

))
,

B = θe−θx/y

(
y

θx

(
eθ(1−x)/(1−y) − δ

(
1 + θ(1 − x)

1 − y

))
− δ

)
,

C = y

x
(1 − e−θx/y)(eθ(1−x)/(1−y) − δ).

Thus,

dy

dx
=
(

y A

x2
− B

y
+ C

1 − y

)
/

(
A

x
− Bx

y2
+ C(1 − x)

(1 − y)2

)
.

Since

y A

x2
− B

y
= y

θx2

(
θ A − θx2B

y2

)
,

A

x
− Bx

y2
= 1

θx

(
θ A − θx2B

y2

)
,

while

θ A − θx2B

y2
= (1 − e−θx/y)

(
eθ(1−x)/(1−y) − δ

(
1 + θ(1 − x)

1 − y

))

−θ2x2

y2
e−θx/y

(
y

θx

(
eθ(1−x)/(1−y) − δ

(
1 + θ(1 − x)

1 − y

))
− δ

)
=
(

1 − e−θx/y

(
1 + θx

y

))
(eθ(1−x)/(1−y)

−δ

(
1 + θ(1 − x)

1 − y

))
+ δ

θ2x2

y2
e−θx/y > 0,
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hence,y A/x2 − B/y > 0 and A/x − Bx/y2 > 0. On the other hand,C > 0,
thereforedy/dx > 0.

(b) Equation (18) is equivalent to

(1 − e−θx/y)

(
eθ(1−x)/(1−y) − δ

θ(1 − x)

1 − y

)
=
(
2(1 − δ) + δ

(
1 + y

θx

)
× (1 − e−θx/y)

)(
eθ(1−x)/(1−y) −

(
1 + θ(1 − x)

1 − y

))
.

Totally differentiating both sides of the equation, we get

xdy− ydx

x2
A′ + ydx− xdy

y2
B′ + −(1 − y)dx + (1 − x)dy

(1 − y)2
C′ = 0,

where

A′ = −δ(1 − e−θx/y)

θ

(
eθ(1−x)/(1−y) −

(
1 + θ(1 − x)

1 − y

))
,

B′ = θe−θx/y

(
− δy

θx

(
eθ(1−x)/(1−y) −

(
1 + θ(1 − x)

1 − y

))
+ (eθ(1−x)/(1−y)(1 − δ) + δ)

)
,

C′ = θ
(
(1 − e−θx/y)(eθ(1−x)/(1−y) − δ)

−
(
2(1 − δ) + δ

(
1 + y

θx

)
(1 − e−θx/y)

)
(eθ(1−x)/(1−y) − 1)

)
.

Thus,

dy

dx
=
(

y A′

x2
− B′

y
+ C′

1 − y

)
/

(
A′

x
− B′x

y2
+ C′(1 − x)

(1 − y)2

)
.

Since

y A′

x2
− B′

y
= y

θx2

(
θ A′ − θx2B′

y2

)
,

A′

x
− B′x

y2
= 1

θx

(
θ A′ − θx2B′

y2

)
,

while

θ A′ − θx2B′

y2
= −δ(1 − e−θx/y)

(
eθ(1−x)/(1−y) −

(
1 + θ(1 − x)

1 − y

))
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−θ2x2

y2
e−θx/y

(
− δy

θx

(
eθ(1−x)/(1−y) −

(
1 + θ(1 − x)

1 − y

))
+ (eθ(1−x)/(1−y)(1 − δ) + δ)

)
= −δ

(
1 − e−θx/y

(
1 + θx

y

))
×
(

eθ(1−x)/(1−y) −
(

1 + θ(1 − x)

1 − y

))

−θ2x2

y2
e−θx/y(eθ(1−x)/(1−y)(1 − δ) + δ) < 0,

hencey A′/x2 − B′/y < 0 andA′/x − B′x/y2 < 0.
On the other hand, letX − θ(1 − x)/(1 − y); by using Eq. (18) we obtain

C′ = θ
(
(1 − e−θx/y)(eθ(1−x)/(1−y) − δ)

−
(
2(1 − δ) + δ

(
1 + y

θx

)
(1 − e−θx/y)

)
(eθ(1−x)/(1−y) − 1)

)
= K ((eX − δ)(eX − (1 + X)) − (eX − 1)(eX − δX))

= K (−XeX(1 − δ) − δ(eX − (1 + X)) − δX) < 0,

where,K = 2(1− δ) + δ(1+ y
θx )(1− e−θx/y)/(eX − δX), thereforedy/dx > 0.

Proof of Lemma2. (a) Supposey does not go to 1 whenx → 1, buty → y′,
where 0≤ y′ < 1. By Lemma 1,y′ 6= 0.

When(x, y) → (1, y′), Eq. (17) becomes

(y′/θ)(1 − e−θ /y′
)

2(1 − δ) + δ(1 + y′/θ)(1 − e−θ /y′
)

= 1,

or

y′

θ
(1 − e−θ /y′

) = 2 + δ

1 − δ
(1 − e−θ /y′

).

But this equation does not hold since the left-hand side of the equation cannot
exceed 1 while the right-hand side is at least 2, no matter which valuesy andθ

take.
When(x, y) → (1, y′), Eq. (18) becomes

1 − e−θ /y′

2(1 − δ) + δ(1 + y′/θ)(1 − e−θ /y′
)

= 0.
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But this equation obviously does not hold since the right-hand side of the equa-
tion is larger than zero, no matter which valuesy and θ take. Therefore, for
both equilibrium curves, it is true that(x, y) → (1, 1) for all δ ∈ (0, 1) and
θ ∈ (0, ∞). In other words, the upper right ends of both buyers’ and sellers’
equilibrium curves converge to(1, 1).

(b) When(x, y) → (0, y′), where 0< y′ < 1, Eq. (17) becomes 1/(2 −
δ) = e−w/(1 − δe−ww) or 2 − δ = ew − δw, wherew = θ /(1 − y′). Since
(d/dw)(ew − δw) > 0, (ew −δw)|w=0 = 1 < 2−δ and(ew − δw)|w=∞ = ∞, it
has a unique solutionw = θ1. Thus,θ /(1− y′) = θ1 or y′ = 1−θ /θ1. Therefore,
whenθ < θ1, the equation has a unique solutiony′ ∈ (0, 1). In other words,
whenθ < θ1, the lower left end of the buyers’ equilibrium curve converges to
(0, y′).

The lower left end of the buyers’ equilibrium curve does not converge to
(x′, 0), wherex′ ∈ (0, 1) since Eq. (17) does not hold at(x, y) = (x′, 0) for
all θ ∈ (0, ∞). Therefore, whenθ ≥ θ1, the lower left end of the buyers’
equilibrium curve converges to(0, 0).

(c) When(x, y) → (x′, 0), where 0< x′ < 1, Eq. (18) becomes 1/(2−δ) =
(1− e−z(1+ z))/(1− δe−zz) or ez = (2− δ)/(1− δ)+ 2z, wherez = θ(1− x′).
Sinced2ez/dz2 = ez > 0 and (d2/dz2)((2 − δ)/(1 − δ) + 2z) = 0, while
ez|z=−∞ > ((2 − δ)/(1 − δ) + 2z)|z=−∞, ez|z=0 < ((2 − δ)/(1 − δ) + 2z)|z=0,
and ez|z=∞ > ((2 − δ)/(1 − δ) + 2z)|z=∞, it has a unique solutionz = θ2 ∈
(0, ∞). Thus,θ(1 − x′) = θ2 or x′ = 1 − θ2/θ . Therefore, whenθ > θ2, the
equation has a unique solutionx′ ∈ (0, 1). In other words, whenθ > θ2, the
lower left end of the buyers’ equilibrium curve converges to(x′, 0).

The lower left end of the buyers’ equilibrium curves does not converge to
(0, y′), wherey′ ∈ (0, 1) since Eq. (18) does not hold at(x, y) = (0, y′) for
all θ ∈ (0, ∞). Therefore, whenθ ≤ θ2, the left end of the buyers’ equilibrium
curve converges to(0, 0).

Proof of Lemma3. By Lemma 2, the claim of Lemma 3 is true whenθ < θ1

or eθ − δθ < 2 − δ because the lower left end of the buyers’ curve is above the
sellers’ curve. We considerθ ≥ θ1 or eθ − δθ ≥ 2 − δ.

Let y = 1
2 and the corresponding points on the buyers’ and the sellers’ equi-

librium curves bex1 andx2 respectively. By Eqs. (17) and (18),x1 andx2 are
the solution to the following equations.

1 − e−2θx1

2(1 − δ) + δ(1 + 1/2θx1)(1 − e−2θx1)
= 2θx1

e2θ(1−x1) − 2δθ(1 − x1)
,

1 − e−2θx2

2(1 − δ) + δ(1 + 1/2θx2)(1 − e−2θx2)
= e2θ(1−x2) − (1 + 2θ(1 − x2))

e2θ(1−x2) − 2δθ(1 − x2)
.

According to Lemma 1, suchx1 andx2 are unique. We need to prove thatx1 ≤ x2.
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Let

f (x) = 1 − e−2θx

2(1 − δ) + δ(1 + 1/2θx)(1 − e−2θx)
,

g(x) = 2θx

e2θ(1−x) − 2δθ(1 − x)
,

and

h(x) = e2θ(1−x) − (1 + 2θ(1 − x))

e2θ(1−x) − 2δθ(1 − x)
.

Then,

d f (x)

dx
= 1

(2(1 − δ) + δ(1 + 1/2θx)(1 − e−2θx))2

×
(

2θe−2θx

(
2(1 − δ) + δ

(
1 + 1

2θx

)
(1 − e−2θx)

)
− δ(1 − e−2θx)

(
− 1

2θx2
(1 − e−2θx) +

(
1 + 1

2θx

)
2θe−2θx

))

= 4(1 − δ)θe−2θx + δ(1 − e−2θx)2/2θx2

(2(1 − δ) + δ(1 + 1/2θx)(1 − e−2θx))2
> 0.

dg(x)

dx
= 2θ(e2θ(1−x) − 2δθ(1 − x) − x(−2θe2θ(1−x) + 2δθ))

(e2θ(1−x) − 2δθ(1 − x))2

= 2θ

(e2θ(1−x) − 2δθ(1 − x))2
(e2θ(1−x)(1 + 2θx) − 2δθ),

but

d

dx
(e2θ(1−x)(1 + 2θx) − 2δθ) = e2θ(1−x)(−4θ2x) < 0,

while

(e2θ(1−x)(1 + 2θx) − 2δθ)
∣∣
x=1

= 1 + 2θ(1 − δ) > 0.

Thus,

dg(x)

dx
> 0.

In other words, bothf (x) andg(x) are strictly increasing.
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At x = 1,

f (1) = 1 − e−2θ

2(1 − δ) + δ(1 + 1/2θ)(1 − e−2θ )
,

g(1) = 2θ,

hence

g(1)

f (1)
= 2θ

2(1 − δ) + δ(1 + 1/2θ)(1 − e−2θ )

1 − e−2θ

= 4θ(1 − δ)

1 − e−2θ
+ δ(1 + 2θ).

Since

d

dθ

(
4θ(1 − δ)

1 − e−2θ
+ δ(1 + 2θ)

)
= 4(1 − δ)

(1 − e−2θ )2

(
1 − 1 + 2θ

1 − e−2θ

)
+ 2δ > 0

so that

g(1)

f (1)
>

(
4θ(1 − δ)

1 − e−2θ
+ δ(1 + 2θ)

)∣∣∣∣
θ=0

= 2 − δ > 1,

thereforeg(1) > f (1).
At x = 0, it is easy to see thatf (0) = g(0). In addition, since

d f (x)

dx
= 4(1 − δ)θe−2θx + δ(1 − e−2θx)2/2θx2

(2(1 − δ) + δ(1 + 1/2θx)(1 − e−2θx))2

∣∣∣∣
x=0

= 2θ

2 − δ

and

dg(x)

dx
= 2θ(e2θ(1−x)(1 + 2θx) − 2δθ)

(e2θ(1−x) − 2δθ(1 − x))2

∣∣∣∣
x=0

= 2θ

e2θ − 2δθ
,

whenθ ≥ θ1, e2θ − 2δθ > eθ − δθ ≥ 2 − δ, we haved f (0)/dx > dg(0)/dx.
Therefore,f (x) > g(x) for x ∈ (0, x1) and f (x) < g(x) for x ∈ (x1, 1).

On the other hand,

dh(x)

dx
= 1

(e2θ(1−x) − 2δθ(1 − x))2
((−2θe2θ(1−x) + 2θ)(e2θ(1−x) − 2δθ(1 − x))

−(e2θ(1−x) − (1 + 2θ(1 − x)))(−2θe2θ(1−x) + 2δθ))

= 4θ2(δ − 1)(1 − x)e2θ(1−x) + 2δθ(1 − e2θ(1−x))

(e2θ(1−x) − 2δθ(1 − x))2
< 0,
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that is,h(x) is strictly decreasing. Meanwhile,h(1) = 0 andh(0) = (e2θ − (1+
2θ))/(e2θ − 2δθ) > 0.

By the properties off (x), g(x), andh(x), we only need to prove thatf (x∗) ≤
g(x∗), wherex∗ is the unique solution to the equationg(x) = h(x). Solving the
equationg(x) = h(x) we getx∗ = 1 − ln(1 + 2θ)/2θ . Since

f (x) − g(x) = 1 − e−2θx

2(1 − δ) + δ(1 + 1/2θx)(1 − e−2θx)

− 2θx

e2θ(1−x) − 2δθ(1 − x)

= (1−e−2θx)(e2θ(1−x)−2δθ(1−x)−δ(1+2θx))−4θ(1−δ)x

K1K2
,

whereK1 = 2(1−δ)+δ(1+1/2θx)(1−e−2θx) andK2 = e2θ(1−x) −2δθ(1−x),

f (x∗) − g(x∗) = 1

K1K2
((1 − e−2θ (1 + 2θ))((1 + 2θ) − δ ln(1 + 2θ)

−δ(1 + 2θ − ln(1 + 2θ))) − 2(1 − δ)(2θ − ln(1 + 2θ)))

= 1

K1K2
((1 − e−2θ (1 + 2θ))(1 − δ)(1 + 2θ)

−2(1 − δ)(2θ − ln(1 + 2θ)))

= 1 − δ

K1K2
(1 − e−2θ (1 + 2θ)2 − 2θ + 2 ln(1 + 2θ))

= 1 − δ

K1K2

(
1 −

(
1 + 2θ

eθ

)2

+ ln

(
1 + 2θ

eθ

)2
)

.

Let F(X) = 1 − X + ln X, thend F(X)/d X = −1 + 1/X, d2F(X)/d X2 =
−1/X2 < 0. Thus,F(X) is maximized atX = 1 with the value ofF(1) = 0.
BecauseK1 > 0 and K2 > 0, whenθ 6= θ0, (1 + 2θ)/eθ 6= 1, therefore
f (x∗) − g(x∗) < 0, hencex1 < x2. Whenθ = θ0, (1 + 2θ)/eθ = 1, therefore
f (x∗) − g(x∗) = 0, hencex1 = x2. Indeed, by Proposition 2, whenθ = θ0, the
buyers’ equilibrium curve coincides with the sellers’ equilibrium curve at the
45◦ line.

Proof of Lemma4. By Eqs. (11) and (13),

lim
xt →1
yt →0

U B
t = 0 < 1 = lim

xt →1
yt →0

U A
t .

SinceU B
t andU A

t are continuous, we conclude thatU B
t < U A

t in the area below
the buyers’ equilibrium curve, andU B

t > U A
t in the area above the curve. On the
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other hand, by Eqs. (12) and (14), limxt →1
yt →0

V B
t = 1/(2 − δ) > 0 = lim xt →1

yt →0
V A

t .

SinceV B
t andV A

t are continuous, we conclude thatV B
t > V A

t in the area below
the sellers’ curve, andV B

t < V A
t in the area above the curve.

Proof of Proposition3. (a)θ 6= θ0. Suppose(xt , yt) is the state of distribu-
tions of buyers and sellers in periodt , where 0< xt < 1 and 0< yt < 1. If
(xt , yt) is on the buyers’ equilibrium curve, thenxt+1 = xt and yt+1 < yt . If
(xt , yt) is on the sellers’ equilibrium curve, then,xt+1 < xt and yt+1 = yt . In
both cases,(xt+1, yt+1) will be in between the buyers’ and the sellers’ equilib-
rium curves. If(xt , yt) is in between the buyers’ and sellers’ equilibrium curves,
then,xt+1 < xt andyt+1 < yt . Hence,(xt+1, yt+1) will remain in between the
buyers’ and sellers’ equilibrium curves. Therefore, once(xt , yt) falls between
or on either one of the curves, it will never leave the region again. Notice that
xt andyt are strictly decreasing in this region. Therefore,(xt , yt) converges to
(0, 0). On the other hand, if(xt , yt) is above the buyers’ equilibrium curve, then
xt+1 > xt andyt+1 < yt . Such movement will continue until(xt , yt) happens to
hit the buyers’ equilibrium curve or falls between the buyers’ and sellers’ equi-
librium curves. By the above argument, eventually it also converges to(0, 0). A
similar argument applies to the case when(xt , yt) is below the sellers’ equilib-
rium curve. In conclusion, for all(xt , yt) (0 < xt < 1 and 0< yt < 1), (xt , yt)

will converge to(0, 0).
(b) θ = θ0. In this case, the buyers’ equilibrium curve coincides with the

sellers’ equilibrium curve. If(xt , yt) is above or below the buyers’ equilibrium
curve (the sellers’ equilibrium curve),(xt , yt) will converge to an equilibrium
point on the curve, which is not necessarily the equilibrium point it originally
deviated from (it is a zero probability event). Therefore, no equilibrium is stable
whenθ = θ0.
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