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1. Motivation 

Divergence of social and private interests is a standard feature of many economic 

situations. Market failures may be minimized or avoided by an appropriate 

choice of a tax or subsidy schedule that induces the individual to internalize the 

external costs and benefits of his action. Consider, for instance, the external costs 

generated as a car travels at different speeds on an expressway. Suppose that as 

the car drives at a speed x  it imposes a net social externality ( )s x .  The external 

effect includes the danger to other drivers in the event of an accident as well as 

the possibility of an accident itself, both of which vary with speed.  If the driver 

has a net benefit ( )B x  from driving at a speed x  then he can be induced to drive 

at the socially optimal speed that maximizes )()( xsxB   by a penalty or 

Pigouvian tax p(x), which, if speed is observed, satisfies )()( xsxp   regardless of 

the specific functional form of ( )B x . 

The tax achieves its purpose when the speed x  of the car is perfectly 

measured. If, however, the technology allows only an imperfect measurement of 

the speed of the car then the driver of the car will not generally choose the 

socially optimal speed.  As an example, suppose )(xs  is convex, and Y  is the 

unbiased but imperfect measure of speed.  Then [ ( ) | ] ( )E s Y x s x .  Thus, a penalty 

function )()( ysyp   based on the observed speed y will usually result in a choice 

of speed which is different from the socially optimal speed. 

The natural question then is whether a penalty function based on the 

imperfectly observed speed y can force the agent to internalize the cost s(x) for 

driving at speed x regardless of his benefit function. We consider the following 

problem: Suppose a tax or subsidy function s(x) associated with an action level x 

that is measured perfectly achieves a certain objective.1 For ease of reference, let 

us call s(x) a (social) externality function. The action x is only imperfectly 

observed as a random variable Y whose distribution depends on the true action x. 

                                                 
1 The function )(xs  could be a Pigouvian tax, or alternately, ( )s x  could be viewed as a price/penalty 

function that can help the market to co-ordinate towards the optimum described by Coase (1960). 
Generally, we will treat )(xs  to be a given target tax or transfer function. 
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We examine how and when a tax or subsidy function p(y) of the observed signal 

gives rise to the same choice of action by the agent as the tax or subsidy function 

s(x) regardless of the nature of his benefit function.  In this case, there is a 

Pigouvian solution to the problem of externalities even when the behavior is 

observed with error.2 

We will show that in a broad class of circumstances, there is indeed a 

solution to the problem for risk neutral agents.  What is needed is enough 

information in the signal to separate distributions of behaviors.  If two distinct 

distributions of behaviors produce the identical distribution of signals, then it is 

not possible to distinguish these distributions with any penalty function.  If the 

function s separates the distributions of behaviors, then no solution can possibly 

exist, because the signal does not distinguish distributions that the penalty 

function separates. Therefore separating distributions is a necessary condition for 

implementation.  The remarkable fact is that it is also sufficient.  Moreover, the 

same condition conveniently works for both finite and continuous state spaces, 

although continuous state spaces may in some cases lead to approximate, rather 

than exact, implementation. 

Interest in the implementability of desired outcomes by penalty functions 

is not new. Pigou (1952) suggested that forcing an agent to internalize the 

damage he causes by taxing him the amount of the damage would take the 

market toward efficiency. Coase (1960) critiqued that the Pigouvian scheme 

provides the wrong incentives. However, interpreted appropriately (so that the 

price suggested by Coase is the tax) the Pigouvian principle continues to hold in 

his examples. In fact, Sandmo (1975) showed that in the absence of government 

revenue requirements the Pigouvian tax implements the first best, and when 

there is a revenue requirement the Pigouvian principle extends appropriately. In 

all these cases, of course, the agent’s action is perfectly observable and there is no 

uncertainty about any element of the model. 

                                                 
2 Note that the role of y is purely that of a signal on the true action x that actually gives rise to the 
externality. If the observable y completely determines the level of externality then we are back in the 
perfect observability case. 
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Kwerel (1977), Dasgupta, Hammond and Maskin (1980), Duggan and 

Roberts (2002), among others, assume that there are a finite number of polluting 

firms with costs not observable to the regulator. They show that the first best 

outcome (that arises when costs are perfectly observable) is implementable in 

equilibrium. In these models, the emission level by each firm is perfectly 

observable. In reality, the total pollution is often not observable. While the rate at 

which a car pollutes can be observed through some tests, the amount of gasoline 

burnt or the number of city miles are not easy to observe. Montero (2005) 

assumes that the emission level is not observable but the emission rate is. The 

first best outcome cannot be implemented in this framework. In contrast, we 

consider a situation where the agent cannot perfectly control what the principal 

observes, i.e., his action gives rise to a stochastic signal. 

Similar problems arise in litigation contexts especially in the application of 

tort laws where advance contracting is not possible. Court rulings are not without 

errors. A judge may err in favor of the plaintiff just like she may err in favor of the 

defendant (see Posner, 1973, for a detailed discussion of errors in judicial 

administration). The presence of such errors has been argued to distort the 

actions of agents away from socially desirable levels. A part of the literature has 

taken an economic approach to describe the nature of damages that should be 

awarded as deterrence for agents to not deviate from the socially optimal 

behavior. Shavell (2011) shows that liability damages are welfare improving over 

taxation of actions when, for instance, the optimal level of action for the agent is 

not publicly known. In fact, if the victims do not bring liability suit or if the court 

may err in favor of the defendant with a positive probability then awarding only 

the liability damage is not sufficient to get the agent to take socially optimal 

decisions. In such cases, it is essential to incorporate a punitive damage and 

inflating the liability damage by a factor depending on the probability of the error 

(or the probability with which the suit may not be brought) to restore socially 

optimal behavior (see Shavell, 2011, and Polinsky and Shavell, 1998). 

Png (1986) allows rulings to have both errors in favor of the defendant 

(type I error) and errors in favor of the plaintiff (type II error) and shows that in 



 5

order to make the injurer choose the socially optimal action it is necessary to 

include both a penalty and a subsidy over the liability. This paper is closest to the 

work of Png (1986) except that we allow injurer types to differ so that the 

“penalty” or “transfer” function has to get all types of injurers to act in a socially 

optimal (or some other predetermined) manner. Thus, while for Png the optimal 

transfer scheme always exists, the same cannot be guaranteed in our case. The 

relevant question then is what kind of “evidence” (i.e., the signal of the true 

action) must the penalty be based upon, to induce the socially optimal behavior 

by the injurer. We give an intuitively simple necessary and sufficient condition 

that the evidence must satisfy to implement the socially optimal behavior in such 

cases. In our case, the associated transfer to the victim may also involve punitive 

damage as well as subsidy depending on the nature of the evidence. 

The principal-agent formulation of our problem demands a few words 

about its relationship with the agency literature. Our approach is distinct from 

the standard agency problems in that we require that a single penalty function 

implement the target externality function for all relevant action levels.  In 

contrast, the agency literature usually employs a menu of contracts, treating the 

benefit function as private information and extracting it prior to the agent’s 

choice of action, while we seek a single penalty function that works for all benefit 

functions.3   The difference in the nature of the problems is most easily seen by 

observing that in the moral hazard model (cf. Holmstrom, 1979) that also uses a 

single payment schedule, the first best is always implementable when the agent is 

risk neutral, which is not true in our setting.4 Thus, our results sit nicely between 

the standard agency models and the literature on implementation of tax 

functions. 

Most mechanism design solutions entail complicated mechanisms that are 

very sensitive to the underlying description of the environment.  This sensitivity 

                                                 
3 In 1990, the Texas legislature considered a proposal to allow drivers to avoid modest speeding tickets, but 
only if they had purchased speeding coupons in advance.  Had the plan passed, Texas would have 
implemented a menu of speeding fines, but the measure never reached a vote.  To our knowledge, no 
speeding fines involve a menu of contracts. 
4 We will discuss our results in the agency context in greater detail below. 
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is especially extreme when correlation is exploited to mitigate incentive 

constraints.  In contrast to most related literature, we provide an approximation 

to the solution that has quite modest informational requirements (means and 

variances of the error function), which in many applications are knowable.  

Consequently, our approach is plausibly applicable in real world settings, such as 

the speeding example discussed above. 

2. The Model 

Let x  denote the action chosen by a risk neutral agent and Y  be the associated 

(publicly observable) signal. Y is distributed according to density )|( xyf  

conditional on x , x X, y Y. The function f completely describes the relevant 

(stochastic) environment of the situation. To keep the exposition simple, we 

present our results for two cases: the finite-dimensional case where X and Y are 

finite sets of sizes m  and ,n  respectively; and the infinite-dimensional case where 

x  and y  take values on the unit interval, i.e., Y=X= ],1,0[  and f is continuous. 

The results and discussions of section 4 extend straightforwardly to more general 

measurable sets and distributions in their current forms.5 

The action x generates a private return B(x,) for the agent with a privately 

known type . The agent has quasi-linear utility 

( ( , ), ) ( , ) .U B x t B x t    

from taking action x and making a payment t, if any. We assume that transfers 

are non-distortionary. 

Let us denote by )(xs  the externality (or transfer or tax) function that the 

regulator wants to implement. We are interested in examining when and how a 

penalty function ( )p y  makes the agent face the exact same problem for all   that 

he would with perfect observation. If the action is measured imperfectly then a 

                                                 
5 Our results are most interesting when X is a richer set than Y; this will become clear in later discussions. 
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function )(yp  which we refer to as the penalty function of the imperfect 

observation y  will be said to implement )(xs  if 

( ( , ), ( )) [ ( ( , ), ( )) | ]U B x s x E U B x p Y x   

for all x X. 

Quasi-linearity of utility implies that )(yp  implements )(xs  if 

( , ) ( ) ( , ) [ ( ) | ]B x s x B x E p Y x    , 

i.e., 
( ) [ ( ) | ].s x E p Y x  

If )(xs  is first-best and )(yp  implements ),(xs  then )(yp  is first-best in spite of 

imperfect observability of action. Throughout this paper we denote by ,A  the 

(conditional) expectation operator on );(p  with this notation, p  implements s  

if .Aps   

In the finite actions case we assume x  takes values m,...,2,1  and y  takes 

values 1,2,...,n  so that )|( xyf  is the probability that action y  is observed when 

action x  is undertaken. In this case where the agent is risk-neutral we have that  

)(yp  implements )(xs  if 

)()|()(
1

xsxyfyp
n

y




 

for all x. In matrix notation we write this as sAp   where A  is the nm  matrix of 

conditional probabilities and p  and s  are n - and m - vectors, respectively. With 

continuous actions we have under risk-neutrality that ( )p y  implements ( )s x  if 

)()|()(
1

0

xsdyxyfyp   

for all .x  The reason for considering both cases is that a finite dimensional 

approach with finite matrices makes the analysis straightforward. However, the 

intuition from finite dimensional analyses often does not extend to the infinite 

dimensional analysis where a continuous set of actions is undertaken. Also, the 

standard literature on both externality and the basic agency problems in large 
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parts deal with the continuous models. Thus, it is desirable to treat the 

continuous actions case separately. While the infinite dimensional analysis does 

not permit the ease of working with matrices, we are able to verify some of the 

key findings from the finite actions case. 

Throughout this paper we will denote by   the uniform probability 

measure on the interval ].1,0[  Thus when the actions are continuous A  is an 

integral operator (a continuous linear transformation) from 2 ( )L   to 2 ( ).L   In 

light of the fact that we work with a 2 ( )L   space, the relevant equalities, and 

other statements and relationships must be interpreted as almost everywhere   

and convergences as convergence in 2 ( ).L   

3. Can the Crime Fit the Punishment? 

When does using the social externality function as a penalty function work even 

in the presence of error?  Our first result shows that in the infinite dimensional 

space of all possible externality functions only a “negligible” sub-collection of 

externality functions ( )s x  can be implemented by ( ) ( )p y s y . 

Proposition 1. Consider the continuous action case. In any given environment 

there are at most a finite number of linearly independent externality functions 

that can be implemented by ( ) ( )p y s y .  

Proof. See Appendix. 

In other words, given ( | )f y x  the collection of 2 ( )L   functions that can be 

implemented by using the externality function as a penalty function belong to a 

finite dimensional subspace. 

Of course, if there is no error, the penalty function sp   implements the 

externality function .s  However, not only is zero error sufficient, it is also 

necessary for all s to implement itself. 
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Proposition 2. An environment allows all externality functions ( )s x  to be 

implemented by itself (i.e., by setting ( ) ( )p y s y ) if and only if actions are 

observable without errors in that environment. 

Proof. See Appendix. 

We now turn to positive results. 

4. Existence 

We now examine environments where an externality function can be 

implemented by some penalty function. Existence of a solution p  is at the center 

of problems ranging from extraction of information rent in auctions to 

implementation of payment functions in agency problems and existence of 

continuation payoffs in repeated games. The conditions that are generally used to 

obtain existence for these problems are variations of the spanning condition 

which for the finite dimensional problem requires that the matrix A  have full row 

rank. However, the spanning condition is not necessary for implementation. Also, 

it is easy to see that if ,nm   i.e., the size of the action space is larger than the 

signal space, the full row rank condition cannot be satisfied. 

The necessary and sufficient condition for a solution to the finite 

dimensional sAp   to exist is in fact that the system of equations be consistent. 

To formalize this idea with an intuitive interpretation in mind, and to generalize 

to the infinite dimensional framework we need the following definitions: 

 

Definitions. (i) f  separates distributions 1G  and 2G  over X if 

.)()|()()|( 21  
xx

xdGxfxdGxf  

(ii) s  separates distributions  1G  and 2G  over X  if 

].~|)([]~|)([ 21 GXXsEGXXsE   

When X is finite the integrals are substituted by summations. 
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We can now state the finite dimensional version of the necessary and 

sufficient condition using the separation terminology. 

Proposition 3 (Existence – finite actions). Suppose that the sets of possible 

actions and signals are finite. Then ( )s x  is implementable if and only if f  

separates distributions on X that are separated by .s  

Proof. First observe that the range of a finite dimensional linear transformation 

is closed. Hence, by the Fredholm alternative theorem (see Appendix) the 

necessary and sufficient condition for the equation Ap s  to have a solution is 

that 

0TA z     0Ts z   

0zAT  implies z q q   for some probability distributions q  and q . Then we 

can restate the above necessary and sufficient condition as follows: For any pair 

of distributions q  and q  

whenever T Ts q s q  we have T TA q A q  

i.e., f  separates distributions on X that give rise to unequal expectations 

[ ( )] [ ( )]q q
E s X E s X .  

The only if portion of proposition 3 is quite straightforward.  If f  does not 

separate two distributions of ,X  say 1G  and ,2G  then for any ,p  

]~|)([]~|)([ 21 GXYpEGXYpE   because both 1G  and 2G  give rise to the same 

distribution of .Y  Thus, when )(xs  is implementable, i.e., ),(]|)([ xsxYpE   we 

also have ].~|)([]~|)([ 21 GXXsEGXXsE   The remarkable fact is that the 

condition is sufficient – if f separates any distribution that s separates, then there 

exists a function p that implements s in the stochastic environment. 

The above necessary and sufficient condition is almost necessary and 

sufficient when the signals and actions take a continuum of values. The only 
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difference is that in the infinite dimensional problem the image of the integral 

operator is not closed, so we need to also include the possibility that the penalty 

functions can come arbitrarily close to implementing the externality function 

).(xs  Specifically, we need the following definition: 

Definition. Externality function ( )s   is approximately implementable if there is 

a sequence of penalty functions  ( )np   such that  ( ) | ( )nE p Y X x s x  . 

Clearly, all functions in the range of the operator A  are exactly 

implementable. It is only when a function ( )s   is not in the range of A  but is in 

the boundary that it needs to be implemented approximately. Such a function 

),(xs  however, gives rise to an added complication. The existence of a sequence of 

penalty functions )}({ np  in itself does not guarantee that the corresponding 

sequence of choices  )(nx  by the agent with 

  xYpExBx nxn |)(),(maxarg)(    

will also converge to the agent’s choice under ).(xs  If the sequence  )(nx  does 

not converge to a choice )(x  with 

 )(),(maxarg)( xsxBx x    

then the idea of approximately implementing )(xs  becomes meaningless. 

Technically, for such an )(s  additional conditions must be derived from the 

incentive compatibility constraint of the specific agency problem to guarantee 

upper hemi-continuity of the relevant graph. Rather than considering specific 

cases we sidestep this incentive compatibility issue for the boundary points and 

consider approximate implementation only in the sense defined above.6 The 

infinite dimensional version of our result is as follows. 

                                                 
6 Once an approximation is constructed it is usually straightforward to check the incentive compatibility in 
the context of the particular problem. 
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Proposition 4 (Existence – infinite actions). A penalty function s  is at 

least approximately implementable if and only if f  separates distributions on X  

that are separated by s. 

Proof. See Appendix. 

Proposition 4 is the infinite dimensional analog of Proposition 3 and has 

the same interpretation. It is generally straightforward to describe situations in 

the finite-actions case where an externality function cannot be implemented. The 

infinite-dimensional case is less straightforward. Functions that cannot be 

implemented exactly can arise very naturally in the continuous action case. If the 

conditional distribution ( | )f y x  is continuous in x  and ,y  discontinuous penalty 

functions are not exactly implementable. Of course, discontinuous functions may 

be obtained as limits of continuous functions. 

The implementable externality functions are dense in 2 ( )L   only under 

some stronger conditions on the environment. By the modified Fredholm 

alternative theorem (see Appendix) the implementable functions are dense if and 

only if 

for all ,y    
1

2

0

( | ) ( ) 0 & ( ) ( ) ( ) 0.f y x g x dx g x L g x     

By a construction similar to that in the proof of Proposition 4 (see Appendix) it 

follows that the implementable function are dense in 2 ( )L   if and only if for two 

densities 1( )g x  and 2 ( )g x  

1 1

1 2

0 0

( | ) ( ) ( | ) ( )f y x g x dx f y x g x dx   

implies 1 2( ) ( )g x g x , i.e., f  separates every pair of distinct distributions. This is, 

in fact, an infinite dimensional counterpart of the finite dimensional condition 

that matrix A  of conditional probabilities have full row rank. We call this the 

spanning condition. The necessary and sufficient condition from propositions 3 
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and 4 that ties )(xs and )|( xyf , instead,  will be referred to as the joint 

separation condition. 

 

Implementation under Joint Separation and Spanning Conditions 

Several variations of spanning conditions, which we collectively refer to as 

spanning-type conditions, have been used in problems ranging from areas of 

principal-agent problems to repeated games with imperfect monitoring (Cremer 

and McLean, 1988; McAfee and Reny, 1992; Melumad and Reichelstein, 1989; 

Fudenberg, Levine and Maskin, 1994). 

Cremer and McLean (1988) and McAfee and Reny (1992) examine the 

problem of implementing a target expected payment function under a spanning-

type condition on agent beliefs in models of adverse selection. The two papers 

also take advantage of a menu of contracts, and hence use selection by agent as 

an indication of the agent’s type. They are then able to fully extract payoffs 

(implement target transfers, in our language) from all types of agents.   In 

contrast, we do not anticipate using a menu for the externalities problem because 

that requires contracting in advance. Contracting in advance is, of course, 

implausible in the case of speeding and absurd in the case of intoxicated drivers. 

 Models of moral hazard are closer to our model in spirit. Holmstrom 

(1979) aims to induce appropriate behavior at a single point; in our notation, it 

would be as if there is only one type of agent. The need to implement a function 

at multiple points arises when the agent has multiple types. Laffont and Tirole 

(1986), McAfee and McMillan (1987), among others, consider such models of 

moral hazard with private types and quasi-linear utilities. As in the rent 

extraction literature, the agency literature approach the solution with menu of 

contracts. If the principal in the mixed model of moral hazard and adverse 

selection of McAfee and McMillan (1987) cannot use a menu of contracts then the 

implementation problem we consider in this paper arises there, too. 
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Melumad and Reichelstein (1989) show that under a spanning-type 

condition on conditional probabilities )|( xyf , the type-independent transfer 

)(yp  is as good as the type-dependent transfer ),( yp . They also demonstrate 

that the condition is not necessary. The relevant program in this problem 

generally gives the solution in the form of the expected transfer  xYpEY |)(  

conditional on the agent’s action. Whether there is an output-contingent transfer 

schedule )(yp  that can implement the suggested solution involves exactly the 

same problem that we consider in this paper. Of course, we now know that such 

implementation is possible under specific conditions obtained by relating )|( xyf  

to  .|)( xYpEY  

We conclude the discussion in this section by observing that the joint 

separation condition is quite distinct from the spanning condition with the help 

of an example. 

Example. Consider the standard additive error model where  xY  with 

]1,0[x  and )(~ h  independently distributed from ,X where )(h  is the uniform 

distribution on ].1,0[  The spanning condition holds if for any )(1 xg  and )(2 xg  

).()()()()()( 21

1

0

2

1

0

1   ggdxxgxyhdxxgxyh                   (1) 

However, 

 
y

dxxgdxxgxyh

0

1

1

0

1 )()()(  

so that (1) is satisfied. Clearly, the spanning condition is satisfied and so the 

separation condition is automatically satisfied in this case for any externality 

function. Now suppose that the signal is observed only in its integer part, i.e., 

  xY  where  z  is the part of the number z  that appears before the decimal 

point, often known as the floor of z. For expositional simplicity, we let   .12    For 

two symmetric densities )(1 xg  and )(2 xg  the distribution of X  is symmetric 

around 1. Hence, Y  takes values 0  and 1 with equal probabilities. It follows that 
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the spanning condition cannot hold in this case, whereas the joint separation 

condition can continue to hold. In fact, it is not difficult to check that in any given 

environment the collection of implementable externality functions is non-empty, 

thus the joint separation condition is applicable quite generally. 

5. Construction of a Penalty Function 

Existence theorems are often cold comfort to someone who needs to use a 

construct.  In this section we provide a method of constructing the penalty 

function in the case of multiplicative errors. 

  Suppose that Y x , 0   and that the externality function s  is analytic, 

so that it can be expressed by a Taylor series: 

 ( ) .ii
i

s x a x  

Let 

 ( )
i

i
i

i

a y
p y

E
  

Then 

 
( )

[ ( ) | ] | ( )
i

ii
ii

a x
E p Y x E x a x s x

E




 
   

 
   

whenever the series converges absolutely at each point in the support. This is a 

full solution for analytic s  for the multiplicative case. In addition, for any 

continuous )(s  on a compact set of X, we can approximate arbitrarily closely by 

first approximating )(s  with an analytic function and then using the )(p  for the 

analytic function. 

How does the penalty compare to the externality?  Suppose that ,xY    

for ,0  and the error is either unbiased or upward biased, i.e., 1E  and that 

all the derivatives of )(xs  are nonnegative, i.e., ,0ia  as arises with the 

exponential function. Then the penalty is less than the externality, i.e., 

),()( ysyp   because  .1)(  ii EE   Thus ).()( ysya
E

ya
yp i

ii

i
i   
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The multiplicative error model provides a construction for additive errors 

for many externality functions. Consider the additive error model  Y x    and 

assume that (log( ))s z  is an analytic function of ,z  and that jEe     for each 

nonnegative integer j   .  Because ))(log(s  is analytic, we can express 

.))(log(
0






j

j
j zazs   Consequently, setting log( )x z , ( ) ( ) .x j jx

j js x a e a e    It 

is readily verified that ( )
jy

j

j

a e
p y

Ee   satisfies  ( ) ( ).E p Y s x   

6. Small Errors 

So far, our main results – existence and construction under multiplicative or 

additive errors – tell us little about the actual nature of the penalty function.    

Imagine that a car going at 100 mph generates an externality ),100(s  would the 

corresponding penalty function charge more than ),100(s  or less upon observing 

a speed of 100 mph? A 10 mph increase in speed at 100 mph could presumably 

do much more damage than the same increase would do at 70 mph. Would the 

corresponding penalty function reflect that? Under the hypothesis that errors are 

small, we can provide a sharper characterization of the penalty functions. 

When the error is sufficiently “local” in nature, the Taylor expansion allows close 

approximation of the penalty function given the externality function. We consider 

the second order Taylor expansion to derive an approximation. In what follows 

we let Y  be the observation by the regulator and provide a formula for 

approximating the penalty function that implements an externality function ( )s x  

when the associated observational error is small.  Let ]|[)( xYEx   and 

].|))([()( 22 xxYEx    
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Proposition 5. Suppose that the family of random variables  

 ))(()(
~

xYbxYb    

with distribution functions )|/))()1(~(()|~( xbxbyFxyGb   separate, for all 

small 0b , any pair of distributions on X  that are separated by ).(s  Assume 

also that )(x  is twice differentiable and monotonic.7 If )(2 x is small, the 

penalty function is approximated by 

)).(())((
2

1
))(()( 1

2

2
121 zs

dz

d
zzszp     

 
Proof. See Appendix. 

In particular, when the signal distribution is unbiased, we have 

)( )(½)()( 2 xxsxsxp   

It is now much easier to relate the penalty to the externality function. For 

instance, when the observation is unbiased ( xx )( ) and the error ( )(2 x ) is 

small, the penalty function is smaller or larger than the externality function 

depending on whether s  is convex or concave.  The approximation for p  is in 

fact exact when )(2 x  does not depend on x  and s  is quadratic. To see this 

observe that if 2
210)( xaxaaxs   then we have 

2
2

2
210

2 )(½)(  axaxaaxsxs   

 And, hence, 

   
 

)(

)(½)(

2
210

2
2

22
210

2
2

2
210

2

xs

xaxaa

axaxaa

aYaYaaEYsYsE












 

 

Thus, the formula fits the quadratic case exactly, and it is not surprising that it 

represents a second order approximation in general. 

                                                 
7 The two assumptions are necessary to apply the Taylor approximation result at ( )x . 
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7. Conclusion 

Given an externality function which implements a social objective, this paper 

examines the possibility of implementing the social objective when the action is 

observed with error.  Provided that the signal is informative in the sense that it 

separates certain distributions of actions and agents are risk-neutral, the social 

objective remains implementable even with observational error.  In addition, 

when errors are small, there is a closed form second-order approximation for the 

penalty function that depends only on first and second moments and two 

derivatives of the externality function.  The formula is applicable when activity is 

measured reasonably accurately, which is necessary for an acceptable 

implementation. This formula is simple enough to lend itself to actual 

implementation. 

 There is good reason to suppose that errors are small in most settings in 

which penalty functions are in use.  Courts are generally hostile to punishments 

that do not fit the crime committed and observational error has been used to 

disallow evidence, deeming such evidence unreliable.  That is, courts are typically 

hostile to punishments that are not commensurate with the crime.  Our approach 

constructs appropriate ex ante incentives in the presence of observational error, 

but does nothing directly to insure fairness of the realization of the penalty.  For 

this reason courts may be hostile to the approach taken here; while it aligns ex 

ante incentives, it may result in extreme ex post punishments.  On the other 

hand, with small errors and a convex externality function, our approach involves 

reducing the fine below that which would prevail were the error ignored; such a 

reduction might arguably be viewed as more fair.  Thus, fairness considerations 

are not an absolute bar to implementation, but present thorny issues beyond the 

scope of the present analysis. 

In this paper we have kept the implementation issue simple by assuming 

that the agent accepts the penalty for what it is and does not contest it. In many 

legal situations, the signal based on which the penalty is determined is only an 

evidence of the real act, and as such may be contested in a court. A substantial 
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punitive damage gives the defendant an incentive to contest the penalty. In this 

case, if there is a scope for avoiding or lowering the payment then the original 

payment function will not achieve its objective. On the other hand, if the damage 

awarded is not high enough there will be a natural incentive for the plaintiff to 

appeal. The scope for successful appeals then introduces further distortion into 

the outcome. Excessive punitive damages may also invite frivolous lawsuits (cf. 

Posner, 1973, for a discussion of the importance of these issues in actual 

litigations). Thus, extreme payments with an appeal phase make the situation 

strategic. The implementability issue in that case depends on how the game is 

played out under different penalty functions. Although more complex, this is 

clearly an interesting direction to go for future research which we hope to persue. 

 Our analysis does not apply in the form of first-best implementation when 

the agent is risk averse. The difficulty arises due to the welfare effect of the 

redistributive role of tax function under risk aversion. If the agent is risk averse 

and the penalty is a function of a stochastic signal, the socially optimal penalty 

function depends on the conditional distribution of the signal. Implementing a 

function that is first-best when the action is observed perfectly may not be 

optimal in the stochastic environment due to the risk cost to the society.8  While 

an externality function may be implementable using the same techniques 

developed here, it is no longer possible to conclude that the implementation is 

optimal. 

 

                                                 
8 We thank Ilya Segal for pointing out this difficulty in analyzing risk aversion. 
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Appendix: Proofs 

Proof of Proposition 1. First note that the integral operator A  is compact. 

Therefore, if there is  a non-zero function ( )s x  such that As s  then the operator 

has an eigenvalue .1  The result then follows upon applying Proposition II.4.13 of 

Conway (1990) and observing that the space of functions s  for which   0A I s   

is at most finite dimensional.  

Proof of Proposition 2. The “if” part follows straightforwardly. To show the 

“only if” part, let us consider I , the identity operator  Is s s V    where V  is the 

relevant (finite or infinite dimensional) space of penalty functions. Now, As s  

for all s V  implies that ( ) 0A I s   for all s V . This implies that 0A I   

where   is the norm for the space ( )B V  of bounded linear operators on .V  Thus 

we have A I  which completes the proof.  

The proofs of propositions 3 and 4 will use the following result: 

Fredholm Alternative Theorem (cf. Keener, 1988). If A  is a bounded linear 

operator in Hilbert space H  with a closed range, the equation Ap s  has a 

solution if and only if , 0s u   for every u  in the null space of the adjoint 

operator *A . 

Definition. We say that the equation Ax b  has an approximate solution if 

there exists a sequence   1n n
x




 in 2 ( )L   with nAx b . 

A Modified Fredholm Alternative Theorem. Let A  be a compact linear 

operator. Then Ax b  has either a solution or an arbitrarily close approximate 

solution if and only if 

, 0v b   for all v  satisfying * 0A v  . 

Moreover, all solutions in the equation Ax b  are exact if and only if ran A  is 

finite dimensional. 
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Proof. Only if part. Suppose that Ax b  is at least approximately solvable. Then 

there exists a sequence   1n n
x




 possibly all identical such that n nb Ax b  . 

This implies that for v  satisfying * 0A v   

*, lim , lim , lim , lim 0 0n n n n n n nv b v b v Ax A v x      

 

If part. Suppose , 0v b   for all v  satisfying * 0,A v   but Ax b  does not have 

even an approximate solution. Then r ob b b   where rb  is in the closure of the 

range of A  and ob  is in its orthogonal subspace. Therefore, , 0 ob Ax x   so that 

* , 0 oA b x x   which implies that * 0oA b  . Now using the hypothesis of this part 

we have , 0ob b   which implies , 0o o rb b b  , or, , , 0o o o rb b b b  . Since 

ob is orthogonal to rb  this implies that , 0o ob b   or, 0ob  . Hence,  cl ranb A , 

i.e., Ax b  either has an exact solution or an approximate solution. 

To prove the second part of the result observe that by Problem 7.1.1 of 

Abraamovich and Aliprantis (2002), a compact operator has a closed range if and 

only if its range is finite dimensional. Next we show that Ax b  has only exact 

solutions if and only if ran A  is closed. The ‘if’ part follows from the original 

Fredholm Alternative Theorem (see above). To see the converse, suppose ran A  is 

not closed. Then there exists a sequence   1n n
x




 such that limn nb Ax  is well 

defined and ran b A . Thus Ax b  is at least approximately solvable.  

Proof of Proposition 4.  

The modified Fredholm alternative theorem implies that a necessary and 

sufficient condition for a sequence  )(np  with the property  

)()|()(
1

0

xsdyxyfypn   

to exist is that 
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0)()(
1

0

 dxxuxs  whenever .0)()|(
1

0

 dxxuxyf   

Now suppose a 2 ( )L   function ( )u x  satisfies 0)()|(
1

0

 dxxuxyf  and does 

not vanish over some positive   measure subset. Define 

( ) ( ) ( )  and  ( ) ( ) .v x u x u x w x u x    

Then v  and w  are non-negative functions satisfying ( ) ( ) ( )u x v x w x  . 

Also, ( : ( ) 0) 1x u x    implies that ( ) ( )v x w x  over a set with positive measure. 

 Next, 0)()|(
1

0

 dxxuxyf    

  
1

0

1

0

0)()|( dxdyxuxyf   0)|()(
1

0

1

0

  dxdyxyfxu   0)(
1

0

 dxxu  

i.e., 

Kdxxwdxxv  
1

0

1

0

)()(  (say) 

Since v  and w  are non-negative functions satisfying ( ) ( )v x w x  on a set 

with positive measure, we have 0K  . Thus 

K

xv
xv

)(
)(~   and  

K

xw
xw

)(
)(~   

are probability density functions satisfying 

dxxwxyfdxxvxyf  
1

0

1

0

)(~)|()(~)|(  

Thus the necessary and sufficient condition above can be restated as that 

for two densities )(~ xv  and )(~ xw  

 
1

0

1

0

)(~)()(~)( dxxwxsdxxvxs  whenever .)(~)|()(~)|(
1

0

1

0
  dxxwxyfdxxvxyf  

In other words, ( | )f y x  separates any pair of densities )(~ xv  and )(~ xw , i.e., 

 
1

0

1

0

)(~)|()(~)|( dxxwxyfdxxvxyf  
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whenever )(~ xv  and )(~ xw  give rise to separate expectations for ,s  i.e., 

 
1

0

1

0

.)(~)()(~)( dxxwxsdxxvxs   

  

 
 
Proof of Proposition 5 

Let Y  be the observation with a conditional distribution ( | )F y x . Define 

( )Y x   , which has a distribution ).|)(()|( xxFxH    The corresponding 

density is ( | ).h x   Recall that ]|[)( xYEx   and ]|))([()( 22 xxYEx    so that 

0]|[ xE     and  ).(]|[ 22 xxE    

For any 0b  but small let ),(~ bp   solve (suppressing the limits in the 
integrations) 

 1( , ) ( | ) ( ( ))p z b b h x d s z                                   (A1) 

Our hypothesis guarantees that the functions ),(~ bp   exist for all small 0.b  9 

Existence in the case of 0b  is, of course, immediate from the monotonicity of 

).(x  Our target is the solution at .1b   Note that 1( ,0) ( ( ))p z s z , so that 

1
1( ,0) ( ( ))

d
p z s z

dz
  and 

2
1

11 2
( ,0) ( ( )).

d
p z s z

dz
  

Taking the derivative with respect to b of both sides of equation (A1) 

above we have 

  1 2( , ) ( , ) ( | ) 0p z b b p z b b h x d          , 

which at 0b  gives 

1 2( ,0) ( | ) ( ,0) ( | ) 0p z h x d p z h x d         

or, 2 ( ,0) 0.p z   This also implies .0)0,(12 zp  

                                                 
9 Note that if )(s  is on the boundary of the range of operator A  and can only be approximately 

implementable, then the function )(s  must be replaced by its exactly implementable approximation, say 

),(~ s  at this and the next few steps. The result is still unaltered since )(~ s  approximates ).(s  
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Taking the second derivative with respect to b  of both sides of equation 

(A1), we have 

2
11 12 22( , ) 2 ( , ) ( , ) ( | ) 0p z b b p z b b p z b b h x d                 . 

Setting 0,b   

2
11 12 22( ,0) 2 ( ,0) ( ,0) ( | ) 0p z p z p z h x d            

or,  

)0,(~]|[)0,(~0 22
2

11 zpxEzp    

Hence 
]|[)0,()0,(~ 2

1122 xEzpzp   

            
2

2 1
2

( ( ))
d

s z
dz

    

 
Now we use the second order approximation on the first argument of  

:),( bxp  

1 2
2 22

2
1 2 2 1

2

1
( , ) ( ( )) ( ,0) ( ,0)

2

1
                ( ( )) ( ( ))

2

p z b s z bp z b p z

d
s z b s z

dz



  



 

  

 

  

 

 
 
At ,1b  

2
1 2 1

2

1
( ,1) ( ( )) ( ( ))

2

d
p z s z s z

dz
      

 
It is straightforward at this point to see that scaling the error down and 

scaling b  up in the same amount keeps the entire calculation the same. Hence, 

1b   is without loss of generality and we have the result.  
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