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Abstract. In the standard model of sponsored search auctions, an ad is
ranked according to the product of its bid and its estimated click-through
rate (known as the quality score), where the estimates are taken as exact.
This paper re-examines the form of the efficient ranking rule when uncer-
tainty in click-through rates is taken into account. We provide a sufficient
condition under which applying an exponent—strictly less than one—to
the quality score improves expected efficiency. The condition holds for a
large class of distributions known as natural exponential families, and for
the lognormal distribution. An empirical analysis of Yahoo’s sponsored
search logs suggests that exponent settings substantially smaller than
one can be efficient for both high and low volume keywords, implying
substantial deviations from the traditional ranking rule.

1 Introduction

Sponsored search is today considered one of the most effective marketing vehicles
available online. As the stakes have grown, the auction mechanism has seen
several revisions over the years to improve efficiency and revenue. When first
introduced by GoTo in 1998, ads were ranked purely by bid; later, in 2002,
Google adopted the mechanism and introduced a quality score to weigh bids in
proportion to clicks received [5], a practice now shared by every major search
engine. In the basic model of sponsored search auctions [10], the quality score
corresponds to an ad’s position-normalized click-through rate (CTR). Under the
assumption that CTRs are measured exactly, it is simple to verify that ranking
ads in order of quality score times bid is economically efficient.

In this paper we re-examine the form of the efficient ranking rule, taking into
account the inherent uncertainty in CTR estimates. Even for high-volume key-
words, CTRs are notoriously difficult to estimate because clicks are rare events
and new ads constantly enter the system. We consider a parametrized family
of ranking rules that order ads according to scores of the form eγb, where e is
the estimated position-normalized CTR, b is the bid, and γ ∈ [0, 1]. This family
was first introduced by Lahaie and Pennock [9], who showed that settings of γ
strictly less than 1 can improve revenue. Their model assumes that CTR esti-
mates are exact. In this work we show that, in the presence of CTR uncertainty,
using γ less than 1 can be justified on efficiency grounds.



Our main result identifies a sufficient condition under which setting γ strictly
less than 1 improves efficiency. The condition relates quality scores based on
historical click data (e.g., taking e to be the empirical CTR, normalized for
position) to a Bayes estimator of the CTR. We show that the condition holds
for a wide class of distributions known as natural exponential families, which
includes the normal, Poisson, gamma, and binomial distributions among others.
We further show that it holds for the lognormal distribution, which we found
to be the best model of Yahoo’s CTR estimates. We observe that γ is linked to
the concept of shrinkage in Bayesian inference [4], and draw on this connection
to empirically estimate the efficient γ for several keywords in Yahoo’s sponsored
search market. Our empirical analysis suggests that settings of γ substantially
smaller than 1 can be efficient for both high and low volume keywords.

The remainder of the paper is organized as follows. Section 2 introduces
the model, including the manner in which we incorporate uncertainty in CTR
estimates. Section 3 proves the result that identifies when using γ less than 1
improves efficiency. Section 4 shows that the result applies to natural exponential
families as well as the lognormal distribution; it also provides concrete examples
of the efficient ranking rules for the beta and lognormal distributions. Section 5
reports on our data analysis of Yahoo’s sponsored search logs to uncover the
efficient settings of γ in practice. Section 6 concludes.

2 The Model

In this paper we restrict our attention to a single keyword, with a fixed set of
agents competing for ad placement whenever a query on the keyword is per-
formed. There are K slots on the page to be allocated among N agents, where
N > K. In a sponsored search auction each agent i places a bid bi, and the ads
are ranked in decreasing order of wibi where wi is a weight, or quality score,
assigned by the search engine. When an ad is clicked, the corresponding agent
pays the lowest bid it could have placed while maintaining its position; this is
known as the second-price payment rule.

While the second-price rule amounts to the Vickrey payment with a single
slot, this is no longer the case with multiple slots, and it is well-known that for
K > 1 sponsored search auctions are not truthful [1]. In general an agent has
an incentive to shade its bid bi below its true value per click (i.e., willingness
to pay) vi. Nonetheless, under the widely accepted solution concept of envy-free
equilibrium [3, 14], it is the case that agents bid in such a way that they are
ranked according to wivi, because wibi is an increasing function of wivi. There-
fore, in what follows, our results and statements in terms of bids will continue
to hold if these are replaced with values, assuming envy-free equilibrium, and
we can set aside incentive concerns to focus on the problem of efficient ranking.

The determine an efficient ranking the search engine develops an estimate of
the click-through rate (CTR) cij that ad i would obtain if placed in slot j. We
assume that CTRs are separable, meaning they factor according to cij = eixj
into an advertiser effect ei and a position effect xj . Because clicks are stochastic,



the advertiser effect is treated as a random variable that follows a probability
model ei ∼ p(·|θi), parametrized by θi, with mean µi = E[ei | θi]. Position effects
could also be modeled as random variables in principle, but in this work we treat
them as known constants.

While separability is only an approximation to actual CTR patterns [2], it
is still relevant for the search engine to estimate position-normalized advertiser
effects because wi = µi is a natural choice for the quality score. If s : K → N
is an allocation of slots, where slot j goes to agent s(j), then under separability
the efficiency of the allocation is:

E

 K∑
j=1

xjes(j)bs(j)

∣∣∣∣∣∣ θ1, . . . , θN
 =

K∑
j=1

xjµs(j)bs(j).

As it is (typically) the case that x1 > x2 > · · · > xK , it is then efficient to
take wi = µi and rank agents in decreasing order of µibi [8]. In this work, we
relax the assumption that the probability model for each ei is known exactly and
consider how this uncertainty can affect the form of the efficient ranking rule.
When discussing CTR modeling, we will often suppress the subscript i when not
referring to a specific advertiser, as we do until the end of this section.

To incorporate uncertainty in the probability model due to limited data,
we introduce a prior θ ∼ q(·) on the model parameter. Given a vector of m
observations e = (e1, . . . , em) for the advertiser effect, a generic approach to
ranking is to compute a statistic t(e) of the data, and set the weight w to
be a function of the statistic. For instance, one could compute the maximum
likelihood estimate θ̂(e) given the data and use the corresponding statistic

tM (e) = E[e | θ̂(e)] (1)

as a weight in order to rank the agents. We will refer to (1) as the maximum
likelihood statistic. This is often straightforward to compute (e.g., for distribu-
tions such as the Bernoulli, normal, and Poisson it is the empirical mean). The
maximum likelihood approach is unbiased as the amount of data grows, but in
practice click observations are limited. To properly incorporate uncertainty in the
presence of limited data, we can instead use a Bayesian approach. In this case the
parameter distribution is updated via Bayes rule which sets q(θ|e) ∝ p(e|θ)q(θ),
where p(e|θ) =

∏m
i=1 p(e

i|θ), and the posterior mean is then

tB(e) = E[e | e] =
∫
Θ

E[e | θ] q(θ | e) dθ, (2)

where Θ is the domain of the parameter θ. We will refer to (2) as the Bayes statis-
tic. While this statistic leads to efficient ranking incorporating all uncertainty,
it can be more challenging to compute depending on the probability model for
advertiser effects and the prior used.

In the remainder of the paper we will focus our attention on ranking rules
that set w = t(e)γ for γ ∈ [0, 1]. With γ = 1, using statistic (2) is efficient,



and using statistic (1) is efficient in the limit as the amount of data grows. This
is the usual form of ranking rule used in sponsored search, taking the statistic
as a quality score. At γ = 0, on the other hand, we rank purely by bid, a rule
that was used in the very first sponsored search auctions [5]. As we will see, the
virtue of this class of ranking rules is that it allows one to use γ to incorporate
uncertainty into the ranking, increasing efficiency, while using simpler statistics
such as (1) rather than (2).

Formally, assuming bids have been fixed, a ranking rule σ defines an alloca-
tion of slots to agents for every set of observations e = (e1, . . . , eN ) of advertiser
effects, so that σ(· ; e) : K → N . The expected efficiency of a ranking rule is
defined as

E

 K∑
j=1

xjtB(eσ(j;e))bσ(j;e)

 ,
where the expectation is with respect to the distribution over sampled obser-
vations. In what follows, we use V (γ) to denote the expected efficiency of the
ranking rule that uses w = t(e)γ to weigh bids, for a given statistic t. We are
interested in the settings of γ that are most efficient.

3 Main Condition

Our main result provides a sufficient condition for the use of a γ < 1 exponent
on the chosen ranking statistic t(e) on efficiency grounds, rather than revenue
grounds as in Lahaie and Pennock [9]. Intuitively, the exponent reflects the
contribution of the prior in the Bayes statistic (2). For the sake of simplicity we
state the theorem for the case of two agents and one slot (N = 2, K = 1), and
for this case we can ignore position effects.

Theorem 1. Assume that agents are ranked according to t(ei) for i = 1, 2.
Then we have V ′(1) < 0 if the quantity

E [tB | t]
t

(3)

is decreasing in the statistic t ≡ t(e), where tB ≡ tB(e).

Proof. To simplify notation, we write µi for random variable tB(ei), and ti
as short-hand for t(ei). Let f(ti, µi) denote the joint distribution between the
ranking statistic and the Bayes statistic, for i = 1, 2, and let ft and fµ be
the marginals; variables with different subscripts are independently distributed.
Agent 1 is chosen over agent 2 if tγ1b1 > tγ2b2, or t1 > t2 (b2/b1)1/γ . The expected
efficiency can be written as

V (γ) = E[µ2b2] + E[µ1b1 − µ2b2]1{t1>t2(b2/b1)1/γ},



where 1A is the characteristic function of the set A. Differentiating with respect
to γ, we obtain

V ′(γ) = E
[
(µ1b1 − µ2b2)t2 (b2/b1)1/γ

1
γ2

log(b2/b1)
]
, (4)

where the expectation is over the random variables µ1, µ2, and t2. Evaluating
this at γ = 1, we obtain

V ′(1) = E [(µ1b1 − µ2b2)t2 (b2/b1) log(b2/b1)]

= b2 log
(
b2
b1

)
E
[(
µ1
b1
b2
− µ2

)
t2 (b2/b1)

]
= b2 log

(
b2
b1

)
E
[(
µ1t2 − µ2t2

(
b2
b1

))]
= b2 log

(
b2
b1

)
E [(µ1t2 − µ2t1)]

∣∣∣∣
t1=t2(b2/b1)

(5)

Let M and T denote the domains of definition for variables µi and ti respectively
(i = 1, 2). We now have

E [µ1t2] =
∫
T

∫
M

∫
M

µ1t2f(µ1, t1)f(µ2, t2) dµ2 dµ1 dt2

=
∫
M

∫
M

µ1t2f(µ1, t1)ft(t2) dµ1 dt2

=
∫
M

∫
M

µ1t2fµ(µ1|t1)ft(t1)ft(t2) dµ1 dt2

=
∫
M

t2ft(t1)ft(t2)E[µ1|t1] dt2

= E [ft(t1)t2E[µ1|t1]] . (6)

The outer expectation in the latter is with respect to t2. By an analogous deriva-
tion we find that

E [µ2t1] = E [ft(t1)t1E[µ2|t2]] . (7)

Combining (6) and (7), we find that the expectation in (5) evaluates to

E [(µ1t2 − µ2t1)] = E [ft(t1)(t2E[µ1|t1]− t1E[µ2|t2])]

= E
[
ft(t1)t1t2

(
E[µ1|t1]

t1
− E[µ2|t2]

t2

)]
. (8)

Recall that this is evaluated at t1 = t2(b2/b1). Now assume b1 > b2, so that
t1 < t2. Under condition (3) we see from (8) that the expectation term in (5)
is positive, while the leading term b2 log(b2/b1) is negative, so (5) is negative.
By a symmetric argument, the derivative (5) is negative when b1 < b2, which
completes the proof.



The conditions given in the theorem imply that efficiency is improved by using
γ = 1 − ε rather than γ = 1, for some ε > 0. The theorem does not claim that
using t(e)γ as a weight, with a properly chosen γ < 1, is exactly efficiency. When
using a statistic such as the empirical advertiser effect for ranking, the condition
that (3) be decreasing should hold, intuitively, because tB is a mixture of the
empirical effect and the prior. Therefore the expectation tB should not respond
strongly to a change in the observation t. This intuition is corroborated for a
large class of distributions in the next section.

4 Exponential Families

To usefully apply our main theorem, one needs the ability to evaluate the ex-
pectation of the Bayes statistic given the value of the ranking statistic used in
practice. As suggested in Section 2, a convenient choice for the latter is the
maximum likelihood statistic, which often evaluates to the empirical mean of
the observed advertiser effects. In this section we consider a rich collection of
distributions, known as exponential families, to which the theorem applies and
which cover most of the standard distributions one might use for CTR model-
ing. Exponential families have closed forms for the maximum likelihood statistic,
and have convenient conjugate priors which make the Bayes statistic tractable
to analyze. The properties of exponential families that we introduce here are
standard and can be found in [12, 15].

An exponential family is a parametrized distribution with density that takes
the form

p(e|θ) = f(e) exp [θ · φ(e)− g(θ)] . (9)

Here f is a base density over advertiser effects, and θ is known as the natural
parameter. The term φ(e) is the sufficient statistic. We will restrict our attention
to families with scalar-valued sufficient statistics; this implies that the natural
parameter θ is also a scalar. The term g(θ) is a normalizing constant given by

g(θ) = log
∫
f(e) exp [θ · φ(e)] de.

The domain of the natural parameter is those θ for which the normalizer is finite:
Θ = {θ : g(θ) < +∞}. It is known to be convex—for the case of a scalar natural
parameter, the domain is a (possibly unbounded) interval. It is straightforward
to check that the first derivative of the normalizer evaluates to the expectation
of the sufficient statistic, a fact we will use later on:

g′(θ) = E [φ(e) | θ] . (10)

In general, the maximum likelihood estimate θ̂(e) for the natural parameter,
given a vector of m observations e = (e1, . . . , em), cannot be evaluated analyti-
cally. However, the expectation of the sufficient statistic under this estimate is
simply

E[φ(e) | θ̂(e)] =
1
m

m∑
i=1

φ(ei), (11)



namely the empirical mean of the sufficient statistic. An exponential family has
a conjugate prior of the form

p(θ|ν, n) = exp [ν · θ − n · g(θ)− h(ν, n)] .

This is again an exponential family, but with a two-dimensional natural parame-
ter (ν, n), and here h(ν, n) is the normalizing constant. Given the m observations
(e1, . . . , em), the parameters of the conjugate distribution are updated according
to the rule:

n← n+m

ν ← ν +
m∑
i=1

φ(ei)

Note that the latter parameter is essentially updated according to the maximum
likelihood statistic (11). Therefore, exponential families provide a tractable form
for the maximum likelihood statistic, and define a clear relationship between
this statistic and the posterior distribution. This makes them amenable to the
application of Theorem 1.

4.1 Natural Exponential Families

A natural exponential family is one where the sufficient statistic is simply φ(e) =
e. In this case, the maximum likelihood statistic coincides with the empirical
mean, because according to (11) we have

tM (e) = E[e | θ̂(e)] =
1
m

m∑
i=1

ei.

Many of the most prominent univariate distributions are natural exponential
families, such as the normal, Poisson, gamma, exponential, Weibull, binomial,
and Bernoulli distributions [12]. For all of these distributions, the condition (3)
in our main theorem applies when using the maximum likelihood statistic for
ranking, as the next result shows.

Proposition 1. Assume advertiser effects are distributed according to a natural
exponential family, and that advertisers are ranked according to weights tM (e)γ .
Then there is an ε > 0 such that using γ = 1 − ε improves expected efficiency
over γ = 1.

Proof. For succinctness let ẽ =
∑m
i=1 ei, and let ē = ẽ/m. As just mentioned,

tM (e) = ē for a natural exponential family; denote this empirical mean by ē.
We will show that (3) is decreasing in ē, and the result will then follow from
Theorem 1. After a Bayes update, we have

E[e | ē]
ē

=
1
ē

∫
Θ

E[e | θ] p(θ | ν + ẽ, n+m) dθ

=
1
ē

∫
Θ

g′(θ) exp[(ν + ẽ)θ − (n+m)g(θ)− h] dθ

(12)



=
ν

(n+m)ē
+O(1)

− 1
(n+m)ē

∫
Θ

[(ν + ẽ)− (m+ n)g′(θ)] exp[(ν + ẽ)θ − (n+m)g(θ)− h] dθ

=
ν

(n+m)ē
− 1

(n+m)ē

∫
Θ

p′(θ | ν + ẽ, n+m) dθ +O(1). (13)

In the above we have used h as short-hand for h (ν + ẽ, n+m). Note that the
first term in (13) is decreasing in ē. We will have proved condition (3) if we
can establish that the second term vanishes. But this is the case because the
posterior density integrates to 1, and therefore we have the identity

d

dθ

∫
Θ

p(θ | ν + ẽ, n+m) dθ = 0.

Interchanging the differentiation and integration operations, which is admissible
because the posterior density is continuous, completes the proof.

To gain some intuition for the result, it is helpful to consider a concrete in-
stance of a natural exponential family. In one interpretation of the separable
CTR model, the position effect is the probability that the user will look at a
slot, and the advertiser effect is the probability the ad is clicked given that it
is viewed [8]. As clicks are binary events, the Bernoulli distribution—a natural
exponential family—is then a straightforward choice of model for advertiser ef-
fects. Assume that e ∼ Bernoulli(p) and that p ∼ Beta(nµ, n(1− µ))—the beta
distribution is the conjugate prior for the Bernoulli. The mean of the latter is
µ, while the empirical mean ē is both the maximum likelihood statistic and a
sufficient statistic for the Bayes update. After the update we have

p | ē ∼ Beta (nµ+mē, n(1− µ) +m(1− ē)) ,

which has a mean of γē+ (1−γ)µ where γ = m
n+m . Because the parameter p for

the Bernoulli is its mean, the posterior mean of p is also the posterior mean of
e. The term (3) in our main theorem therefore evaluates to

γ + (1− γ)
µ

ē
,

which is decreasing in ē, as expected. However, Theorem 1 only states that using
some γ < 1 as an exponent on ē improves efficiency here—it does not state that
ranking according to ēγb is efficient. The closed form solution to the update
implies that to rank two bidders efficiently, we should make the comparison

b1 · [γē1 + (1− γ)µ]
?
> b2 · [γē2 + (1− γ)µ] , (14)

which takes a linear rather than exponential form. We see that when the prior
is uninformative (n = 0) or there is ample data (m → ∞), then γ → 1 and we
rank by ēb. When there is no data, γ = 0 and we rank purely by bid. Note that
to rank efficiently according to (14), one needs an estimate of the prior mean µ.



4.2 Lognormal Distribution

While the probability interpretation of the advertiser and position effects is intu-
itively appealing, in practice the search engine may use a different factorization
of CTRs that does not lead to effects in [0, 1]. However, it is clear that the effects
should be non-negative. The lognormal distribution has support on the positive
reals and so could prove a convenient choice to model advertiser effects—this
turned out to be the case in our empirical analysis, as we report in Section 5
later on. We will show in this section that Theorem 1 applies to this distribution
as well; in fact, using a certain γ ∈ (0, 1) exponent is exactly efficient for this
distribution.

The lognormal is an exponential family, but not a natural exponential family,
because it has sufficient statistic φ(e) = log e. Recall that an effect e is lognormal
if log e ∼ N (µ, σ2

e). We assume the variance is known, and that µ ∼ N (ν, σ2
µ)—

the normal distribution is the conjugate prior for the normal. Given m observa-
tions, let ¯̀= 1

m

∑n
i=1 log ei denote the empirical mean of the sufficient statistic.

Let ê = (
∏m
i=1 ei)

1/m denote the geometric mean of the observations, and ob-
serve that we have ê = exp(¯̀). It is known that the expected value of exp(y) for
y ∼ N (µ, σ2) is exp(µ+ σ2/2), so we have

tM (e) = exp(¯̀+ σ2
e/2) = ê · exp(σ2

e/2). (15)

That is, the maximum likelihood statistic is proportional to the geometric mean,
so the latter is a natural ranking statistic in this context. On the other hand,
letting τe = σ−1

e and τµ = σ−1
µ , the Bayes update leads to the posterior

µ | ¯̀∼ N
(

(1− γ)ν + γ ¯̀,
(
τ2
µ + τ2

e

)−1
)
, (16)

where γ = mτ2
e /(τ

2
µ +mτ2

e ). A straightforward evaluation of (2) therefore gives

tB(e) = exp[(1− γ)ν + γ ¯̀+ σ2
µ/2 + σ2

e/2]

= êγ · exp[(1− γ)ν + σ2
µ/2 + σ2

e/2] (17)

The next result is now immediate, but because of its relevance in practice we
record it as a proposition.

Proposition 2. Assume advertiser effects follow a lognormal distribution. Then
ranking according to êγ , with γ = mτ2

e /(τ
2
µ +mτ2

e ) ∈ (0, 1), maximizes expected
efficiency.

Proof. From (17) we see that tB(e)/ê ∝ êγ−1, which is decreasing in ê because
γ < 1. From (16), we see that ê = exp(¯̀) is a sufficient statistic to perform
the Bayes update, so E[tB |ê] = tB(e). Therefore we know from Theorem 1 that
using some exponent strictly smaller than 1 on the geometric mean improves
efficiency. However, we can in fact achieve exact efficiency, because when ranking
two bidders we make the comparison

b1 · tB(e1)
?
> b2 · tb(e2) ⇔ b1 · êγ1

?
> b2 · êγ2 (18)

where γ = mτ2
e /(τ

2
µ +mτ2

e ). This completes the proof.



When there is ample data (m → +∞) or the prior is uninformative (τµ → 0),
it is efficient to rank according to êb. When there is no data (m = 0), we rank
purely by bid. Note that in making the comparison (18), the contribution of
the prior mean cancels out. This compares favorably to the linear form of the
efficient ranking rule we derived for the beta distribution in (14), where it is
necessary to estimate the prior mean; however, the prior variance is still needed
to determine the efficient γ.

5 Empirical Data Analysis

In this section we report on an empirical analysis of Yahoo’s sponsored search
logs to get a sense of the settings of γ that are efficient in practice. The theory
so far has established that, under reasonable modeling assumptions, using an
exponent of γ = 1− ε on the empirical advertiser effect would improve efficiency,
for some ε > 0. However, if the ε need only be very small according to the data,
these results would have little bearing on real sponsored search auctions.

5.1 Data Description

We collected data by considering all the keywords in the month of June 2010
that had at least one advertisement. From these keywords we retained those
where, over the month, the total number of clicks on ads was at least 2, and
the average depth was at least 2. The depth of a query is the number of ads
shown, which can range from 0 to 12 on Yahoo. The keywords were stratified
into 10 deciles by search volume, and we randomly selected 20 from each decile
for a total of 200 keywords. While the sampling is not proportional, we are not
interested in aggregating statistics across deciles; proportional sampling would
lead to a dataset overwhelmed by tail keywords with sparse click data.

For each ad shown on a keyword, and every position the ad was placed in,
we have the total number of searches and clicks as well as the position effect.
A position here is defined not just by the rank of the ad, but also where it was
placed on the page (top, bottom, side), and how its competitors were laid out.
For instance, showing an ad at the third rank when there are two ads at the top
(i.e., first on the side) is not the same as showing the ad at that same rank when
no ads are at the top (i.e., third on the side): the different positioning leads to a
different position effect. There are a total of 60 distinct positions in our dataset.
For each position we have a position effect hard-coded by Yahoo; while these
were occasionally revised over the month, the changes were typically minimal.
The relative standard deviations of the position effects over the month had a
median of 0% and mean of 2% over the keywords and advertisers. We therefore
take these effects as constants, consistent with our earlier assumptions.

Our dataset has 117K records, one for each keyword-ad-position triplet, and
contains information on 19K distinct ads, for an average of 95 ads per keyword
over the month and 587 records per keyword (naturally the distribution is heavily
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Fig. 1. Lognormality of the observed advertiser effects (position-normalized CTRs).
The left panel shows the empirical distribution for ads that have at least one click over
the month, together with the best-fit normal distribution. The right panel gives the
theoretical quantile-quantile plot.

skewed). We define the observed advertiser effect for an ad at certain position
on a given keyword as the position-normalized empirical click-through rate:

clicks
searches · position effect

The observed effects do not all lie in [0, 1]: they have a median of 0.002 and
mean of 8.12 in our data. Figure 1 indicates that the observed ad effects are
well modeled by a lognormal distribution, restricting our attention to ads that
received at least one click. For this probability model, the results of Section 4.2
show that there is in principle a setting of γ for each keyword that is exactly
efficient.

5.2 Hierarchical Model

To empirically estimate the optimal γ for different keywords we develop a hi-
erarchical Bayesian model of advertiser effects. We have seen through (16) that
with the lognormal distribution (among others), γ can be viewed as the weight
on the empirical advertiser effect in a convex combination between it and the
prior mean. In Bayesian inference this is known as the shrinkage factor [4, 11],
and we can obtain shrinkage estimates as a by-product of a hierarchical model.

We fit a model to each individual keyword. Given a keyword, the units are
ad-position pairs i, and we denote the position-normalized empirical CTR for
this pair by yi. Let j[i] denote the ad in unit i. We fit the following basic one-way
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Fig. 2. Empirical distribution of estimated γ’s for keywords with small and large num-
bers of clicks over the month. The reference lines indicate the means. For keywords
with small numbers of clicks, the distribution is more uniform, whereas for keywords
that attract many clicks γ skews towards 1.

hierarchical model [6]:

log yi ∼ N (αj[i], σ2
y) (19)

αj ∼ N (µα, σ2
α) (20)

where i ranges over all the units and j over all the ads. (To avoid taking the log
of 0, we recoded empirical effects of 0 to 10−5, which is an order of magnitude
smaller than the smallest positive observed effect in our dataset.) We assign
uninformative uniform priors to σy, µα, and σα. The posterior distribution was
evaluated using the Gibbs sampler provided by the JAGS program [13], and 1000
draws from the posterior were taken to estimate model statistics, in particular
γ. For each draw γ was estimated using the following approach proposed by
Gelman and Pardoe [7]. Letting εj = αj − µj for each advertiser j, we set

γ =
VjE[εj ]
E[Vjεj ]

, (21)

where V represents the finite-sample variance operator, Vjεj = 1
n−1

∑
j(εj− ε̄j),

and E in this context is the finite-sample mean. The denominator in (21) is the
unexplained component of the variance in the αj ’s, while the numerator is the
variance among the point estimates of the εj ’s. We will have γ close to 1 if the
latter is large relative to the former, meaning that αj ’s usually lie closer to the
empirical mean of the advertiser’s effect. On the other hand, if the latter is small
relative to the former, then the estimated αj cluster more closely to µj and so



the prior mean is given higher weight. Gelman and Pardoe [7] demonstrate that
(21) can be viewed as a Bayesian analog to the definition of γ we saw earlier:
γ = mτ2

e /(τ
2
µ +mτ2

e ). We report on the mean γ evaluated according to (21) over
the 1000 draws.

Figure 2 shows the distribution of the resulting γ’s over the 200 keywords.
We identified different patterns in the distribution depending on whether we
consider low or high click keywords; here high means greater than 180 clicks per
month, or 6 clicks per day on average. For low click keywords the distribution of
γ is more uniform, with mean and median both at 0.64. High click keywords see
γ more skewed towards 1, as one would intuitively expect, with a mean of 0.78
and a median of 0.82. Note that under both regimes the mean is substantially
below 1, which suggests that using a rule of the form eγb could improve efficiency
for many keywords.
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Fig. 3. Estimated γ for keywords with small and large numbers of advertisers over the
month. The Loess curves show that under both regimes γ increases on average as the
keyword receives more clicks, but for keywords with small numbers of advertisers and
clicks there is substantial variability.

Figure 3 shows the empirical results from a different perspective. We again have
two different regimes: keywords with few and many ads. Here a keyword has
many ads if more than 70 distinct ads were shown over the month. For keywords
with many ads there is a clear relationship between the volume of clicks and γ.
This is intuitive since more clicks means more accurate CTR estimates. For key-
words with few ads there is still a general upward trend, but there is substantial
variability in the γ estimates, attributable to the dearth of data. In both cases
the most relevant range for tuning γ seems to be [0.6, 1].



6 Discussion

To conclude let us discuss a few limitations and extensions of this analysis.
A key assumption implicit in the use of (21), and throughout the paper, is
that each ad sees the same amount of observations m. In practice this is of
course not the case, especially as ads are constantly added to the system. With
uneven amounts of data among ads on a keyword, the estimate (21) amounts
to a weighted combination of the different shrinkage factors for the individual
ads. To rank efficiently, one would have to use ad-specific γ’s. This is not very
appealing because the contribution of the prior mean in (17) no longer cancels
out in the comparison (18), leading to a more complicated ranking rule. A better
understanding of the efficiency trade-offs between keyword- and ad-specific γ’s
is in order.

In our analysis, we base our estimate of the shrinkage factor γ on the empirical
advertiser effects, but in practice the search engine uses machine-learned effects
to rank. While these correlate well with realized advertiser effects, it would be
informative to understand exactly how γ should be set given the search engine’s
estimates. One possibility is to introduce them into (19) as a linear predictor for
realized effects. However, the resulting γ from such a model would not be the
recommended exponent for the machine-learned effects. In fact, because the pre-
dictor would reduce the errors in the numerator of (19), this would misleadingly
pull (21) towards 0. Developing sound ways to estimate γ with machine-learned
effects is an important next step in this line of research.
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