Appendix: Proofs

Proof of Theorem 1:

By induction: Equation (5) establishes the basthefinduction fon=0. Note that (4) is

satisfied by the construction f Suppose that the hypothesis is true for allesless thak.
From (7)
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This is a linear ordinary differential equation,v8e need only verify that the solution holds:
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which establishes the hypothesikatl as desired.

Given the formula fow,, the price posted satisfies
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Proof of Theorem 2:

Definey, = Bs: . The theorem states thgtconverges to 1. Using (8),
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Proof of Claim 1: Note thay, =3, = [%) <1. Suppose, by way of contradiction, tat

is the first instance gf>1. Theny>1>ym1. Thus

1 €-1 1 €1

€E—1 €-1 m-1) ¢ €-1 m-1) ¢
—=Ym m Vm_ym—l( j 2Ym m Vm_ym( j
€ m m




€1

. m-1)e¢ |. . €-1 . - .
sincem| 1 —[—j Is a decreasing sequence that convergeste. This verifies claim
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with the inequality implied by claim 1.
Equality in this expression defines a new sequ@naehich is a lower bound fop,.
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It is readily verified by induction that
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Thus,y, is bounded betweanm, and 1 and thus converges to 1.

From (9): p () = B2 (A(H)) ' = (%j/ .



The evolution of the probability that there ardgems available at timeis governed by the
differential equation
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becausey, increases when a sale is made starting mtthitems, and is decreased when a sale is
made whem items remain. If the firm begins witthunits at time 0, theq(N,0)=1 andy(n,0)=0

for all n<N.

Using the approximation, this becomes
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which has the elegant binomial solution:
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Q.E.D.
Proof of Theorem 4:
o . : NA(t)
The expected value of the amount of remaining aapacis approximatelyn = A0)
0]
Inequality (17) is equivalent to this holding fdr & but it is more convenient to express it in
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Let k(x)=(1 —x)(l + xj ; It is sufficient to prove thax(%Js 1 for allnin [1,N].
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The first inequality follows froom<N and the fact that was shown to be decreasing; the second
inequality from the hypothesis of the theorem tha#(0), and the third inequality by noting that
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(1 —z)(l +£j is a decreasing function afand thus maximized a0, so that
€

€
(1 z)(1+€j <1. Q.E.D.
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