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Modern online advertising increasingly relies on the availability of user tracking technology called cookie-
matching to increase efficiency in ad allocation. Web publishers today use this technology to share infor-
mation about the websites a user has visited, making it possible to target advertisements to users based on
their prior history. This begs the question: do publishers (who are competitors for advertising money) always
have the incentive to share online information? Intuitive arguments as well as anecdotal evidence suggest
that sometimes a premium publisher might suffer from information sharing through an effect called infor-
mation leakage: by sharing user information with the advertiser, the advertiser will be able to target the
same user elsewhere on cheaper publishers, leading to a dilution of the value of the supply on the premium
publishers.

The goal of this paper is to explore this aspect of online information sharing. We show that when ad-
vertisers are homogeneous, in the sense that their relative valuations of users are consistent, publishers
always agree about the benefits of cookie-matching in equilibrium: either all publishers’ revenues benefit,
or all suffer, from cookie-matching. We also show using a simple model that when advertisers are not homo-
geneous, the information leakage indeed can occur, with cookie-matching helping one publisher’s revenues
while harming the other.
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1. INTRODUCTION

When will competitors share online information? We consider this question in the con-
text of Internet cookies, which are small files placed on a user’s computer that permit
a website to record information about a previous visit. Cookies can be used to provide
a better user experience, e.g., by allowing a user to stay logged in on a website or by
remembering user preferences, and can also be used to target advertising.

Many websites now share cookie information with each other [Perlich and Dalessan-
dro 2013]. For instance, a user might notice that after she searches for flights to Hawaii
on Orbitz.com, ads relevant to Hawaii continue to follow her across the web, show-
ing up, say, when she visits the New York Times website. While such cookie sharing
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amongst websites creates some obvious conveniences for the user, it also permits more
targeted advertising by creating a more detailed picture of the customer, leading to
potentially higher profits from advertising. For example, if Walmart knows a user vis-
ited a site focused on infant health, it may choose to also advertise baby strollers to
the same user. Making this information available to advertisers, though, can affect ad
prices, since often the set of websites visited by a user conveys information about how
valuable the user is as a target for advertising. That is, cookie matching can influence
the prices of advertising in the marketplace, which may impact websites’ revenues in
different directions, as discussed shortly. In this paper, we will focus on the incentives
for and against cookie-sharing, asking when websites will voluntarily agree to partici-
pate in cookie-sharing, and what effects on prices and profits cookie-sharing creates.

How cookie matching works. Sharing cookie information is done through a service
called cookie matching that is currently offered by most online advertising exchanges.
Cookie-matching means that when a user visits a website, the ad exchange scram-
bles the cookie that they have placed on the user’s computer (using what is called a
collision-resistant one-way hash function; i.e., a function that transforms each cookie
to a unique identifying string in a way that the transformation cannot be reversed),
and passes the scrambled cookie as an identification number for the cookie to the in-
terested advertisers.1 This cookie id, while not revealing the contents of the cookie,
enables these advertisers to build a mapping between their own cookies and the ad
exchange’s cookie ids and discover if they have interacted with this user before (for
example, if the user has visited their website before, or if they have advertised to the
user before). The advertisers will then be able to decide how much they want to bid
based on this information. This sharing also enables the advertisers (both the winner
of the auction and also the losers) to identify the user in his/her future visits (unless
the cookie is deleted in the meantime).

The obvious benefit of this mechanism is that it allows advertisers to target users
that have previously shown interest in their products. This targeting increases the
value of advertising to the advertisers, and some of this increased value will be passed
to the publishers in the long run. The not-so-obvious drawback for the publishers, es-
pecially premium publishers, is information leakage: a publisher whose site is often
visited by high-value users owns a particularly valuable piece of information about
these users. Without cookie matching, since advertisers have a high value for display-
ing their ads to these users and the number of impressions on this site is limited, the
prices can be driven up in the auction. However, by passing the scrambled cookie to the
advertisers, the advertisers will be able to target the same user elsewhere on cheaper
publishers. This, in effect, increases the supply of advertising opportunities, which can
drive the auction prices down. In this hypothetical scenario, sharing information di-
lutes the value of the supply on the premium publishers, while increasing the value of
other publishers’ supply. In other words, the added value of information is leaked from
the premium publisher to the others.

The goal of this paper is to explore the latter aspect of cookie-matching, i.e., when a
publisher leaks valuable information through cookie-matching that could harm their
revenue (while helping other publishers). This is important, since such scenarios would
present an obstacle to the universal adoption of the cookie-matching technology: a pub-
lisher who is harmed by information leakage would not voluntarily adapt this technol-
ogy in the absence of any side payment.

We start with a discussion of various effects of cookie-matching in ad auctions.

1See [Google 2013] for a more detailed explanation of the cookie matching service.



1.1. The impact of cookie-matching on auction revenue

Sharing information about the supply in an auction (here, the users) naturally impacts
the outcome of the auction and the revenue it generates. We can divide the effects of
providing data on users through cookie-matching on the advertising market into four
major categories:

— More efficient allocation: Data (whether it is labeling the impressions with fea-
tures of the user, or with identifiable information like the scrambled cookie) allows
advertisers to evaluate impressions more accurately, thereby increasing the effi-
ciency of the allocation.

— Market fragmentation: This increased efficiency can also lead to the fragmentation
of the market and decreased revenue for the auctioneer. An example is when two
advertisers are competing for an ad slot, but one advertiser is only interested in male
users while the other is interested in females. In this scenario, providing any data
that helps advertisers distinguish male and female users will lead to a more efficient
allocation, but it can also lead to a lower revenue in a second-price auction.

— Better interaction with the user: Cookie matching allows the advertisers to know
how many times they have seen a user before, thereby personalizing their ad creative
each time and avoiding advertising too many times to the same user. The latter effect
is called frequency-capping.

— Data leakage: By passing the cookie information to the advertiser, the publisher
(and the ad exchange platform) run the risk that the advertiser takes advantage of
this data elsewhere (on different publishers or even on different platforms) to de-
crease her cost at the cost of decreased revenue to the publisher.

The market fragmentation effect (and its positive counterpart, allocation efficiency)
is essentially the reverse of the bundling problem that has been studied in the auction
theory literature [see McAfee et al. 1989]. In this paper, our focus is on the information
leakage effect: we first provide a model that demonstrates this information leakage ef-
fect in equilibrium, and then show that in a large class of models, information leakage
does not cause disagreement about whether or not to cookie-match in equilibrium—
that is, cookie-matching can either increase or decrease publishers’ revenues, but the
direction of the revenue change is the same for all publishers.

1.2. Overview

Our main contribution is a simple model that exhibits the information leakage effect
in cookie matching. Intuition as well as anecdotal evidence suggests that this is a real
effect with many practical implications, and therefore is a phenomenon that one would
like to capture in the equilibrium of a simple model. To achieve this, we employ a model
that avoids having to deal with the complexity of the first two effects by assuming a
homogeneous set of advertisers— a set of advertisers whose relative valuations of dif-
ferent users are similar, or consistent (i.e., the vectors describing each advertiser’s val-
uation of different users are scalar multiples of each other). This is a realistic model in
many situations where there is already enough background information even without
cookie-matching (such as impression type, or user demographics) to divide the market
into fine-enough segments, each with a homogeneous set of competing advertisers that
value the same users highly.

Surprisingly, the analysis of a simple special case of such a model (presented in Sec-
tion 2) shows that in equilibrium, there is always agreement between publishers in
terms of whether they would like to share cookie information or not— either all pub-



lishers’ revenues increase with cookie matching, or all publishers obtain lower revenue
(which of these occurs depends, essentially, on whether frequency capping is revenue
positive or revenue negative). We then extend this result to a fairly general model in
Section 2. Essentially, the only major assumption of our model is the homogeneity of
advertisers. The results, presented in Section 3, suggest that the information leakage
effect might not be as serious a problem in practice as one might suspect. Finally, we
provide a simple model with only two types of advertisers where this result does not
continue to hold— i.e., information leakage from cookie matching indeed has opposite
effects on the revenues of different publishers.

1.3. Related work

Information sharing by competitors has long been studied by economists. Much of this
literature has focused on auctions, especially starting with the seminal work in Mil-
grom and Weber [1982], and most recently in Abraham et al. [2013]. However, this
literature focuses on information provided to competitors, rather than shared by com-
petitors; there are only a few studies focused on incentives to share by competitors
(e.g. Clarke [1983], Gal-Or [1985]) which conclude that firms will not voluntarily share
information. Finally, there is an extensive literature on information-sharing in a car-
tel environment; see e.g. Teece [1994] and the references therein. Information sharing
is often viewed as a sign of collusion on the principle that firms have no incentive to
provide information except to produce a cartel. The focus of the cartel papers is not on
the incentives to join an information-sharing system but instead on the use of such a
system to fix prices.

There are also a number of recent papers on the role of information and target-
ing in advertising. Bergemann and Bonatti [2011] and Fu, Jordan, Mahdian, Nadav,
Talgam-Cohen, and Vassilvitskii [Fu et al.] study the effect of introducing targeting
information on the revenue of ad auctions. Emek et al. [2012] and Sheffet and Mil-
tersen [2012] discuss the algorithmic question of designing revenue-optimal signaling
schemes in second-price auctions. Babaioff et al. [2012] study optimal mechanisms for
selling information.

2. MODEL

The online advertising market consists of three kinds of agents— users, publishers,
or the websites visited by users, and the advertisers who want to display their ads
to users on these websites. The price of an ad impression in this market will depend
on how much information about the corresponding user is available to advertisers at
the time of bidding, since advertisers have different values for advertising to different
users. This means that whether or not cookie-matching is being used in the market-
place will affects the price of advertising, and this effect may be different on different
websites. We will be interested in computing the equilibrium prices of impressions
with and without cookie-matching to determine how cookie-matching impacts publish-
ers’ revenues, and in using this analysis to investigate when the information leakage
phenomenon can arise in an advertising market with cookie-matching. We now present
a formal model which allows addressing this question.

There is a set of publishers, or websites, W = {w1, w2, . . .}, and a number of users
visiting these websites (we use publisher and website interchangeably throughout the
paper). A number of advertisers are interested in advertising to these users, some
of whom are more likely to purchase the advertisers’ products than others, and are
therefore preferred by the advertisers as advertising targets.



User model. We model the fact that different users differ in their response to ads,
and therefore have different values to advertisers, by saying that a user is either a
high type or a low type. We denote the proportion of users of type t, where t ∈ {H,L},
by pt. Note that in the most general model, user types do not have to be restricted to
be binary (high and low), and there could be multiple types of users corresponding to
the differing revenues that the advertiser expects to make from advertising to these
users. For the majority of this paper, we focus on this simplified model with only two
types of users, since this turns out to be a setting rich enough to capture the essence of
the arguments. However, we note that this assumption is for simplicity only; we will
briefly discuss how the result can be generalized to more than two types in Section 3.3.

We model user browsing behavior as follows. We assume that at each time period, the
user (irrespective of her type) leaves the system (i.e., stops browsing) with probability
q.2 If she continues to browse (which happens with the remaining probability 1 − q),
she chooses to visit website w ∈ W with probability pt,w, where this probability now
depends on the user’s type t ∈ {H,L}. We assume that these random choices of whether
to continue, and which website to visit if continuing, are made independently at each
step.

Advertiser model. There are N advertisers, each of whom has some positive value for
a high-type user, and a value of zero for a low-type user. Advertisers cannot directly
observe the type of a user— rather, they can only infer it from the user’s behavior. The
ith advertiser has a value of vi for advertising to a high-type user for the first time;
we assume the advertiser does not obtain any additional utility by advertising to the
same user more than once. We number advertisers in decreasing order of values, so
that v1 ≥ v2 ≥ · · · ≥ vN . A special case of interest is that of a fully competitive market,
i.e., when the vi’s are all the same value v.

We use this model to study incentives for information sharing by comparing the
expected revenue that publishers, or websites, obtain under two types of informa-
tion sharing regimes— one with cookie-matching and one without. Without cookie-
matching, any user appears to be a new user to every advertiser on every visit, since
there is no information preserved between visits. When cookie-matching is available,
a scrambled version of the user’s cookie is sent to all advertisers every time she visits
a website, so that when an advertiser bids for an impression, she knows the entire
sequence of websites that the user u associated with that impression has visited so
far. We analyze and compare the revenue in both models by computing market equi-
librium prices and allocation, i.e., a set of prices for impressions and an allocation of
impressions to advertisers at which

— every impression for which at least one advertiser has non-zero value is sold, and
— each advertiser weakly prefers the impressions she receives to any other set of im-

pressions.

Sometimes there can be more than one set of prices satisfying the above conditions.
For example, if there is only one impression and two bidders with values v1 and v2
interested in this impression, then allocating the impression to the higher bidder at
any price between v1 and v2 satisfies both of the above conditions. In such cases, we
study the lowest-price market equilibrium (in this example, the equilibrium at price
v2), which is a natural generalization of the second price auction prices. Note that it is
not a priori obvious that such a “lowest-price” equilibrium should exist: our proof also

2The assumption that the probability of leaving in each step is constant is consistent with the empirical
observation that the number of websites visited during a session follows exponential decay; see, for exam-
ple, [Ortega and Aguillo 2010].



establishes the existence of such an equilibrium (alternatively, one can apply the result
of Demange, Gale, and Sotomayor [1986] that shows that such a canonical equilibrium
exists). The revenue per impression of a website wi (also called the revenue of publisher
i) is the expected price of an impression on this website in such an equilibrium.

Our results are structured around a homogeneity assumption: we say that advertiser
valuations are homogenous if the value of a user to each advertiser can be written as
a product of an advertiser-specific value, and a user-type specific value (for example,
zero for low-type users and one for high-type users). In other words, the relative valu-
ations of users are consistent across advertisers. As we will see, the information leak-
age phenomenon that is intuitively expected with cookie matching in fact cannot arise
when advertiser values have this property (as is the case in the model with high- and
low-type users defined in this section)— all publishers’ revenues change in the same
direction (i.e., they all increase or all decrease) as a result of cookie matching. As we
will show in Section 4, however, when advertiser values do not have this consistency
property, the heterogeneity in advertiser valuations can indeed lead to the information
leakage phenomenon— we illustrate this via a simple example where a second group
of advertisers that do not care about the type of the user (i.e., with the same value for
high and low-type users) are added to the market.

A special case. We use the following special case of the model as an illustration
throughout the paper. There are two websites or publishers, w1 and w2, where w1 is
the ‘premium’ website (i.e., the website with higher-value users) and w2 is the non-
premium website. A high-type user visits each website with probability 1/2, whereas
a low-type user only visits w2— this means that visiting w1 is a clear signal that the
user is of high-type. Half the user population is high-type, while the other half is low-
type, i.e., pH = pL = 1/2. Also, all advertisers derive the same value from advertising
to high-type users: vi = v for all i. This example represents a case where publisher w1

has a valuable piece of information about its visitors (while w2’s information is not so
valuable).

3. PUBLISHER REVENUE WITH HOMOGENEOUS ADVERTISERS

In this section, we analyze the expected revenue of each publisher in the models with
and without cookie-matching when advertisers are homogeneous (i.e., advertisers’ val-
ues for users are all constant multiples of the same vector). The phenomenon of in-
terest to us is disagreement between different publishers about whether or not to
share information. More precisely, we would like to know if there are scenarios where
providing cookie-matching increases the revenue of one publisher at the expense of
another publisher. Our main result is the following theorem, which proves that in
the model with homogeneous advertisers, this will never happen: all publishers agree
about whether they would like to participate in cookie matching.

THEOREM 3.1. When advertisers are homogenous, the expected revenue per impres-
sion of a website w, both with and without cookie-matching, is proportional to

βw :=
pHpH,w∑

t∈{H,L} ptpt,w
.

Therefore, either for all websites wi, the revenue per impression of wi in the model with
cookie-matching is greater than its revenue per impression in the model without cookie-
matching, or the reverse inequality holds for all wi.



Note that the quantity βw is the fraction of impressions on w that are from high-
type users. Therefore, the above theorem shows that in both models, all websites get
the same expected revenue per high-type visitor.

The proof of Theorem 3.1 is presented in Sections 3.1 (for the model without cookie-
matching) and 3.2 (for the model with cookie-matching). We discuss further general-
izations of this result in Section 3.3, and finally numerically examine the calculated
revenues in the case of the simplest model (with two websites and half the users being
type H) in Section 3.4.

Intuition behind the proof. Our proof of Theorem 3.1 is based on calculating the equi-
librium prices of impressions in both scenarios with and without cookie matching. With
cookie matching, the price of an impression depends only on the user history, and not
on the website on which the impression occured— more precisely, the price depends on
the website only to the extent that it constitutes (the last) unit of information available
to advertisers to update their belief about the type of the user. This means that for ev-
ery history S of the websites the user has visited, we need to calculate an equilibrium
price λ(S) at this history. This is done by writing equations that capture the fact that
prices are at an equilibrium. More specifically, the equilibrium equation in this case
(Equation (5) in Section 3.2) says that the advertiser winning an impression (which is
the advertiser with the highest bid who still has not displayed her ad to the user) is
indifferent between winning the impression and waiting to win the next impression
(if any) by the same user. This gives a recurrence relation that gives the equilibrium
price at a history in terms of the equilibrium price at longer histories. This recurrence
can be solved in combination with a terminating condition that says that when there
is no remaining bidder, the price should drop to zero.

Without cookie matching, the price of an impression depends entirely on which web-
site the impression occurs, since advertisers have no other information available to
discern the user’s type (so for example in the special case, prices will be higher on w1

than w2, since a user on w1 is definitely a high-type user, whereas a user on w2 can
be either high or low-type). The equilibrium equation in this case will be in terms of
variables θw representing the price of an impression on website w, as well as vari-
ables xa,w, representing the fraction of the traffic of w that advertiser a purchases. The
utility function of each advertiser can be written in terms of these variables, and first-
order conditions of optimality of this utility function (in terms of the variables xa,w that
are under a’s control) give us the equilibrium equations. These equations give us the
equilibrium prices and allow us to compare the publishers’ revenues with and without
cookie matching.

3.1. Analysis of the model without cookie-matching

In the model without any cookie-based user tracking, all impressions on a website look
the same. Therefore, for each website w, there is a single user-independent price θw
per impression. We now write equilibrium conditions for these prices.

Consider the utility maximization problem from the perspective of one fixed adver-
tiser a, who needs to decide what fraction xa,w of traffic on each website w to buy. We
compute the utility per user that this advertiser derives from a particular choice of
allocation xa,w. Fix a user of type t ∈ {H,L}. The expected total number of websites
this user visits is 1/q. On each such visit, the probability that she visits website w is
pt,w, in which case she sees the ad of a with probability xa,w. Therefore, for a user of



type t, a pays a total expected cost of
1

q

∑
w∈W

pt,wxa,wθw.

Also, the probability that the user continues to browse for exactly i steps is q(1 −
q)i−1, and the probability of seeing a’s ad on any such step where the user continues
browsing and visits some website is xa,t :=

∑
w∈W pt,wxa,w. So the total probability of

a particular user of type t getting exposed to a’s ad at least once can be written as:

1−
∑
i≥1

q(1− q)i−1(1− xa,t)i =
xa,t

q + (1− q)xa,t
.

Therefore, the total utility that a derives from a random user (of either type) is

U = pH · va
xa,H

q + (1− q)xa,H
− 1

q

∑
t∈{H,L}

pt
∑
w∈W

pt,wxa,wθw.

To optimize the utility of the advertiser with respect to the fractions xa,w of the total in-
ventory on each site that a buys, we need to take the derivative of the above expression
with respect to each xa,w (recall that xa,H :=

∑
w∈W pH,wxa,w):

∂U

∂xa,w
= vapH

pH,wq

(q + (1− q)xa,H)2
−

∑
t∈{H,L}

ptpt,wθw
q

The above derivative is zero if and only if

θw = vapHpH,w(1 + (
1

q
− 1)xa,H)−2(

∑
t∈{H,L}

ptpt,w)
−1

or

θw = va(1 + (
1

q
− 1)xa,H)−2βw. (1)

This means that for every advertiser a and website w, the allocations xa,w and prices
θw are such that either

• Equation (1) holds; or

• xa,w = 0 and θw > va(1 + ( 1q − 1)xa,H)−2βw; or

• xa,w = 1 and θw < va(1 + ( 1q − 1)xa,H)−2βw.

We are now ready to complete the proof of Theorem 3.1 in the case of no cookie-
matching. Assume, for contradiction, that at a lowest-price equilibrium, for two web-
sites w and w′, we have θw/βw > θw′/βw′ . For any advertiser a, if xa,w > 0 and xa,w′ < 1,
we have

va(1 + (
1

q
− 1)xa,H)−2 ≥ θw/βw > θw′/βw′ ≥ va(1 + (

1

q
− 1)xa,H)−2, (2)

which is a contradiction. Therefore, for every a, either xa,w = 0 or xa,w′ = 1. Since
at the equilibrium there must be at least one a∗ with xa∗,w > 0, for this a∗, we have
xa∗,w′ = 1. This means that no other a 6= a∗ can have xa,w′ = 1, and therefore for all



such a’s, we have xa,w = 0, implying that xa∗,w = 1. Since this argument holds for every
two w,w′ with θw/βw > θw′/βw′ , we conclude that a∗ must have bought everything, i.e.,
xa∗,w = 1 for all w.

We now complete the proof using the fact that the equilibrium is a lowest-price equi-
librium. Take a website w with the maximum value of θw/βw. It is easy to see that if we
slightly decrease the price of impressions at this website, no advertiser a 6= a∗ will still
be interested in buying these impressions. Therefore we are still at an equilibrium,
which contradicts the assumption on minimality of prices.

The contradiction shows that at a lowest-price equilibrium, for every two websites w
and w′, we must have θw/βw = θw′/βw′ .

A closed form in the simple model. We can give a simple closed-form expression for
the revenue in the case that all advertisers have the same value v for advertising
to high-type users. In this case, due to symmetry, in the equilibrium we must have
xa,H = 1/N for every advertiser a. Therefore, Equation (1) implies

θw = v(1 + (
1

q
− 1)

1

N
)−2βw. (3)

Plugging in the parameters of the simple model, we get:

θ1 = (1 +
1− q
qN

)−2v and θ2 = (1 +
1− q
qN

)−2v/3.

3.2. Analysis of the model with cookie-matching

We now analyze the model in the cookie-matching regime. In this case, each impres-
sion comes with a complete history of the user (i.e., the websites she has visited), and
therefore the equilibrium price of advertising to the user can depend on this history.
We denote the sequence of websites the user has visited by S = wi1 , wi2 , . . . , wik . The
length of this history is denoted by |S| = k. We denote a history S followed by a visit to
a website w ∈ W by appending w to S as S.w. The price at the history S is denoted by
λ(S).

We write the equilibrium conditions for the price at a history S of length k. At this
history, k−1 advertisers (that can be shown by induction to be the advertisers 1, . . . , k−
1, i.e., the advertisers with the top k − 1 values) have already won an impression, and
therefore only advertisers k, . . . , N are interested. The value of the ith advertiser for
buying this impression is Pr[H|S].vi−λ(S), where Pr[H|S] denotes the probability that
the user is of type H, given the history S of the sites she has visited.

The utility of this advertiser for waiting is the probability that the user returns,
which is (1 − q), times the utility conditioned on her return. If the user returns and
visits a website w, the utility of the advertiser is vi − λ(S.w) if the user is of high type
and −λ(S.w) if she is of low type. Therefore, the overall utility of the advertiser if the
user returns can be written as:

Pr[H|S] ·
∑
w∈W

pH,w · (vi − λ(S.w)) + Pr[L|S] ·
∑
w∈W

pL,w · (−λ(S.w))

= Pr[H|S]vi −
∑
w∈W

Pr[w|S]λ(S.w), (4)



where Pr[w|S] = Pr[H|S].pH,w + Pr[L|S].pL,w is the probability that a user visits the
website w after the history S.

Therefore, the equilibrium condition says that for the advertiser who wins the
present impression, the buy-now utility of Pr[H|S].vi− λ(S) is greater than or equal to
(1− q) times the expression in (4), and for the other advertisers the reverse inequality
holds. This implies that the advertiser winning this impression should be the adver-
tiser k, and in order to get the lowest-price equilibrium, we must have equality for the
advertiser k + 1. Thus, the equilibrium condition implies:

Pr[H|S].vk+1 − λ(S) =

(1− q)

(
Pr[H|S]vk+1 −

∑
w∈W

Pr[w|S]λ(S.w)

)
. (5)

This implies the following recurrence that gives the price at any history in terms of
prices at longer histories.

λ(S) = q.Pr[H|S].vk+1 + (1− q)
∑
w∈W

Pr[w|S].λ(S.w). (6)

For the base of this recurrence, we have

∀ S, |S| ≥ N : λ(S) = 0. (7)

This is because after any history that contains at least N page visits, all but at most
one of the advertisers have already advertised to the user and therefore the price drops
to zero.

Using this recurrence, and induction on the length of the history, we obtain the
following formula for the price at any given history:

λ(S) = Pr[H|S].
N∑

i=k+1

q(1− q)i−k−1vi (8)

For each website w ∈W , the expected revenue per user of this website can be written
in terms of the prices λ(.) as follows:

Revenue per user of w =
∑

S=(wi1
,...,wik−1

,w)

Pr[S]λ(S) (9)

Using (8) and (9), we can write the expected revenue per user of a website w as
follows:

Revenue per user of w =

N∑
k=1

∑
S

Pr[S].Pr[H|S].
N∑

i=k+1

q(1− q)i−k−1vi,

where the second summation is over all histories S of length k that end in w. Using
Bayes’ rule, we have



Revenue per user of w =

N∑
k=1

∑
S

pH .Pr[S|H].

N∑
i=k+1

q(1− q)i−k−1vi.

The summation
∑

S Pr[S|H] is equal to the probability that a high-type user visits
at least k websites, and chooses the website w on her kth visit. This can be written as
(1− q)k−1pH,w. Using this, we can simplify the above expression:

Revenue per user of w =

N∑
k=1

pH .(1− q)k−1pH,w.

N∑
i=k+1

q(1− q)i−k−1vi

= pHpH,wq

N∑
i=2

i−1∑
k=1

(1− q)i−2vi

= pHpH,wq

N∑
i=2

(i− 1)(1− q)i−2vi (10)

The summation in the above expression is independent of w. This means that web-
site w’s revenue per user is proportional to pHpH,w. Also, note that a random user on
each visit chooses w with probability

∑
t∈{H,L} ptpt,w. Therefore, the expected number

of impressions that a user generates on w is proportional to
∑

t∈{H,L} ptpt,w. Thus, the
expected revenue per impression on w is proportional to pHpH,w/(

∑
t∈{H,L} ptpt,w) =

βw. This completes the proof of Theorem 3.1 in the model with cookie-matching.

A closed-form expression for the simple model. In the case that all advertisers have
the same value v, the pricing solution (8) can be simplified to

λ(S) = v.Pr[H|S].
(
1− (1− q)N−k

)
. (11)

Also, Equation (10) can be simplified as follows:

Revenue per user of w = pHpH,wqv

N−1∑
i=0

i(1− q)i−1

=
pHpH,wv

q
(1−N(1− q)N−1 + (N − 1)(1− q)N ) (12)

In the simple model, a random user in expectation creates 1/q impressions, and each
impression will be on w1 with probability 1/4 and on w2 with probability 3/4. Therefore,
the expected revenue per impression in this model is (1−N(1−q)N−1+(N−1)(1−q)N )v
for the website w1, and (1−N(1− q)N−1 + (N − 1)(1− q)N )v/3 for w2.

3.3. Generalizing the model

Our results so far have been presented in a model where there are only two types of
users. This assumption can be relaxed, as follows. Suppose the user can be any of the
types in a set T = {t1, t2, . . .}. The fraction of the users of type t is pt, and users of
this type visit website w with probability pt,w in each stage. Denote the value of an
advertiser a for a user of type t by va,t. We say that the advertisers are homogeneous



if for every advertiser a and user type t, the value va,t can be written as γtva, where va
only depends on the advertiser and γt only depends on the user type — for example,
γt could be the conversion rate (i.e., probability of purchasing the product) of users of
type t, and va the profit per conversion for advertiser a. The case of two types H,L
corresponds to setting γH = 1, γL = 0.

In this section, we generalize Theorem 3.1 to this more general model. Note, how-
ever, that this is not a strict generalization: unlike Theorem 3.1, here we cannot
prove that the equilibrium is the lowest-price equilibrium in the model without cookie-
matching.

THEOREM 3.2. With homogeneous advertisers and multiple user types as defined
above, in both the models with and without cookie matching there is an equilibrium in
which the expected revenue per impression of a website w is proportional to

βw :=

∑
t ptpt,wγt∑
t ptpt,w

.

In the model with cookie matching, this equilibrium is the unique lowest-price equilib-
rium. Therefore, in these equilibria, either the revenue per impression of wi in the model
with cookie-matching is greater than its revenue per impression in the model without
cookie-matching for all websites wi, or the reverse inequality holds for all wi.

PROOF. We start with the model without cookie matching. Similar to the analysis
in Section 3.1, we let θw denote the price per impression on website w and xa,w denote
the fraction of the traffic of website w that advertiser a buys, and write optimality
conditions for these allocations and prices. The expected total cost a pays for a fixed
user of type t ∈ T is

1

q

∑
w∈W

pt,wxa,wθw.

Also, the probability that a particular user of type t getting exposed to a’s ad at least
once can be written as:

1−
∑
i≥1

q(1− q)i−1(1− xa,t)i =
xa,t

q + (1− q)xa,t
,

where xa,t :=
∑

w∈W pt,wxa,w. Therefore, the total utility that a derives from a random
user is

U =
∑
t∈T

ptγtva
xa,t

q + (1− q)xa,t
− 1

q

∑
t∈T

pt
∑
w∈W

pt,wxa,wθw.

The derivative of the above expression with respect to the fractions xa,w can be written
as:

∂U

∂xa,w
=
∑
t∈T

ptγtva
pt,wq

(q + (1− q)xa,t)2
−
∑
t∈T

ptpt,wθw
q

The above derivative is zero if and only if

θw =

(∑
t∈T

ptγtvapt,w(1 + (
1

q
− 1)xa,t)

−2

)
(
∑
t∈T

ptpt,w)
−1.

Let f(x) = (1 + ( 1q − 1)x)−2. Note that f : [0, 1] 7→ [q, 1] is a continuous decreasing
function mapping 0 to 1 and 1 to q. Using this notation, the above equation can be



written as:

θw =

(∑
t∈T

ptγtpt,wf(xa,t)va

)
(
∑
t∈T

ptpt,w)
−1. (13)

We now give an algorithm for constructing an allocation and a set of prices that are
in equilibrium. For every w, the algorithm maintains θw = δβw for a value δ that will
be adjusted until an equilibrium is reached. Furthermore, for every advertiser a, the
algorithm maintains the property that xa,w is the same for all websites w. We denote
this common value by xa. Clearly, this means that xa,t = xa for all types t.

Initially, we set xa = 0 for all advertisers a. Throughout the algorithm, we maintain
δ = max

a
(f(xa)va), (14)

which initially means δ = maxa va. We continuously decrease δ, and to maintain the in-
variant (14), we increase the value of xa for a’s which achieve the maximum of f(xa)va.
We stop as soon as

∑
a xa reaches 1.

First, note that since the algorithm keeps increasing
∑

a xa, it will eventually stop.
At the point that the algorithm stops all of the following conditions are satisfied:

(i) For all w, θw = δβw.
(ii) For all a, δ ≥ f(xa)va.

(iii) For all a with xa > 0, we have f(xa)va = δ.
(iv)

∑
a xa = 1.

By properties (i) and (iii), for every a with xa > 0 and every w, the equality (13) holds,
and therefore the derivative of U with respect to xa,w is zero. Also, for every a, by (i) and
(ii), the right-hand side of (13) is less than or equal to its left-hand side, which means
that the derivative of U with respect to xa,w is non-positive. Finally, U is a sum of linear
and inverse-linear functions (with negative coefficients), and is therefore a concave
function of xa,w ’s. Therefore, the allocation computed by the algorithm maximizes the
utility function U . Since by property (iv) the total demand at this allocation equals the
total supply, this set of allocation and prices forms an equilibrium. It is clear that in
this equilibrium, the revenue per impression of a website w is θw, which is proportional
to βw. This completes the proof of the theorem in the model without cookie matching.

We now analyze the model with cookie matching. As in the analysis in Section 3.2,
the equilibrium price of an impression by a user can depend on the user’s browsing
history S, and is denoted by λ(S). At such a history S with |S| = k, the advertisers
1, . . . , k−1 have already won an impression, and therefore only advertisers k, . . . , N are
interested. The value of the ith advertiser for buying this impression is E[γt|S].vi−λ(S),
where E[γt|S] denotes the expectation of the value of γt, where t is the type of the user,
given the history S of the sites she has visited.

The utility of this advertiser for waiting is the probability that the user returns,
which is (1 − q), times the utility conditioned on her return. If the user returns and
visits a website w, the utility of the advertiser is E[γt|S.w].vi − λ(S.w). Therefore, the
expected utility of the advertiser, if the user returns, can be written as

∑
t∈T

Pr[t|S] ·
∑
w∈W

pt,w · (γt.vi − λ(S.w))

= E[γt|S]vi −
∑
w∈W

Pr[w|S]λ(S.w), (15)



where Pr[w|S] =
∑

t∈T Pr[t|S].pt,w is the probability that a user visits the website w af-
ter the history S. As in Section 3.2, at a lowest-price equilibrium, the expected utility of
buying the next impression for advertiser k+1 should be the same as this advertiser’s
expected utility for waiting. This translates to the following equation:

E[γt|S].vk+1 − λ(S) =

(1− q)

(
E[γt|S]vk+1 −

∑
w∈W

Pr[w|S]λ(S.w)

)
. (16)

This yields a recurrence that gives the price at any history in terms of prices at
longer histories. As in Section 3.2, by induction, the following closed form solution can
be proved for this recurrence (together with the initial condition λ(S) = 0 for |S| ≥ N ):

λ(S) = E[γt|S].
N∑

i=k+1

q(1− q)i−k−1vi (17)

For each website w ∈W , the expected revenue per user of this website can be written
as follows:

Revenue per user of w =
∑
k

∑
S=(wi1 ,...,wik−1

,w)

Pr[S]λ(S)

=

N∑
k=1

∑
S=(wi1

,...,wik−1
,w)

Pr[S].E[γt|S].
N∑

i=k+1

q(1− q)i−k−1vi.

By Bayes’ rule, ∑
S=(wi1 ,...,wik−1

,w)

Pr[S].E[γt|S] =
∑
t∈T

γt
∑

S=(wi1 ,...,wik−1
,w)

Pr[S].Pr[t|S]

=
∑
t∈T

γtpt
∑

S=(wi1
,...,wik−1

,w)

Pr[S|t]

=
∑
t∈T

γtpt(1− q)k−1pt,w.

Therefore,

Revenue per user of w =

N∑
k=1

∑
t∈T

γtpt(1− q)k−1pt,w.
N∑

i=k+1

q(1− q)i−k−1vi,

=
∑
t∈T

γtptpt,wq

N∑
i=2

i−1∑
k=1

(1− q)i−2vi

=
∑
t∈T

γtptpt,wq

N∑
i=2

(i− 1)(1− q)i−2vi (18)

The summation in the above expression is independent of w. This means that web-
site w’s revenue per user is proportional to

∑
t∈T γtptpt,w. Also, note that a random user



Fig. 1. Revenue comparison between the two scenarios in the simple model

on each visit chooses w with probability
∑

t∈T ptpt,w. Therefore, the expected number
of impressions that a user generates on w is proportional to

∑
t∈T ptpt,w. Thus, the ex-

pected revenue per impression on w is proportional to
∑

t∈T γtptpt,w/(
∑

t∈T ptpt,w) =
βw. This completes the proof of Theorem 3.2 in the model with cookie-matching.

3.4. Numerical examination of the simple model

It is instructive to look at the closed-form expressions for the revenue in the simple
model. Setting v = 1 and N to be a large number, we plot the revenue per impression
of w1 as a function of qN in Figure 1. As can be seen in this figure, there is a range of
parameters for which the model without cookie-matching achieves a higher revenue for
publishers than the model with cookie-matching. For example, this happens when q is
roughly 1/(2N), which means that each user visits about 2N websites before quitting.
The intuitive reason is that in this range, the supply in the cookie matching model
(2N impressions per user) is more than the demand (N advertisers), leading to a low
price. In the model without cookie-matching, the inefficiency due to the possibility of
one advertiser advertising multiple times to the same user artificially decreases the
supply, thereby increasing the prices. As the supply (1/q impressions per user) gets
more in line with demand (N ), the cookie-matching model yields higher revenue for all
publishers than the model without cookie-matching.

4. A SCENARIO WITH INFORMATION LEAKAGE

In this section, we show that when advertisers are heterogenous, the impact of cookie
matching on different publishers can indeed be different, leading to a loss of revenue
for some publishers and an increase in revenue for others. This illustrates that the
results on publishers agreeing about whether or not to cookie-match depends on the
homogeneity of advertisers’ valuations of users.

Consider the simple model where there are N advertisers, whom we will call the
type-A advertisers, who value high type users at v and low type users at 0. Suppose in
addition that there areNB typeB advertisers that have a value ofR the first time their
ad is shown, regardless of the user type. Type-A advertisers represent advertisers who
are able to use the cookie information to better target their ads to the users, whereas
type-B’s are generic advertisers that are willing to mass advertise to everyone.

We will show that in this setting, there exists a setting of N,NB , R, v, and q, so that
w1 has higher expected revenue (at equilibrium) in the setting without cookie match-



ing, whereas w2 has higher expected revenue in the setting with cookie matching. This
is precisely the information leakage scenario where the premium website w1 suffers a
loss in revenue due to a dilution of its supply of high valued users.

4.1. Equilibrium revenue with no cookie matching

From the point of view of type A advertisers, the equilibrium conditions are the same
as the ones in Section 3.1. Now consider advertisers of type B. If NB � 1

q then adver-
tisers of type B will be willing to pay R − ε per impression, as the chances of a single
advertiser seeing the same user twice are nearly 0.

If the prices θ1, θ2 and the value of R is such that θ1 > R > θ2 then advertisers
of type A will never be allocated any users from w2. In this case, xa,H = 1

2N , as the
N type A advertisers evenly split all of the high valued impressions coming to w1.

By Equation (1), the prices that support such an allocation are: θ1 = v
(
1 + 1−q

2qN

)−2
.

Also, at any price greater than θ2 = θ1/3, type A advertisers do not want any of the
impressions on w2.

We can now compute the revenue on each website.

LEMMA 4.1. Let θ1 = v
(
1 + 1−q

2qN

)−2
= 3θ2. If θ1 > R > θ2, then the revenue per

impression to w1 is exactly θ1 and the revenue per impression to w2 is R− ε for an ε that
tends to zero as NB tends to infinity.

4.2. Cookie matching

When cookie matching is enabled, then the price advertisers are willing to pay is deter-
mined by the previous history of the user. In particular, any user who has ever visited
w1 is guaranteed to be a type H user, regardless of which website he is currently vis-
iting. On the other hand, if the history S represents k visits to w2 (and no visit to w1),
the probability Pr[H|S] that the user with this history is a high-type can be calculated
using the Bayes rule as follows:

Pr[H|S] = Pr[S|H] · Pr[H]

Pr[S|H] · Pr[H] + Pr[S|L] · Pr[L]
=

2−k · 12
2−k · 12 + 1 · 12

=
1

2k + 1

Therefore, if
v

2N + 1
> R, (19)

then the expected value of a user who has visited w2 k times without visiting w1 to a
type A advertiser is v · Pr[H|S] = v

2k+1
≥ R. Therefore the expected value to a type

A advertiser is larger than the value to a type B advertiser. This implies that the per
impression price for visits N + 1 and onwards for any user will be R.

Let λi be the price of the i-th impression of the user with a history containing at
least one visit to w1. Adapting Equation (5) to this specific setting, with the base case
of the recurrence as λj = R for all j ≥ N , we get:

λk = v − (1− q)N−k(v −R) (20)



Therefore, the expected revenue per user to w1 is:
N∑

k=1

(1− q)k−1

4

(
v − (1− q)N−k(v −R)

)
+

∞∑
k=N+1

(1− q)k−1

4
R.

Since each user creates 1/(4q) impressions on w1 in expectation, the per impression
revenue of w1 is:

θ′1 = 4q ·
N∑

k=1

(1− q)k−1

4

(
v − (1− q)N−k(v −R)

)
+ 4q ·

∞∑
k=N+1

(1− q)k−1

4
R

= v(1− (1− q)N )−Nq(v −R)(1− q)N−1 +R(1− q)N

Moreover, the per impression revenue of w2 strictly increases, since in addition to
type B advertisers, type A advertisers also sometimes bid on impressions on w2, and
whenever they do so, their bid is strictly greater than R.

To demonstrate information leakage, we need to find a setting of R, v,N, q such that
satisfy:

θ1 = v

(
1 +

1− q
2qN

)−2
> R > v

(
1 +

1− q
2qN

)−2
/3 = θ2

v

2N+1
> R

θ1 = v

(
1 +

1− q
2qN

)−2
> v(1− (1− q)N )−Nq(v −R)(1− q)N−1 +R(1− q)N = θ′1

Setting R = 0.03, v = 1, N = 4 and q = 0.05 entails θ1 = 0.0878, θ2 = 0.0293 and
θ′1 = 0.0436, satisfying the three conditions above. This leads to a lower per impression
revenue to the owner of w1, and a higher per impression revenue to the owner of w2 in
the cookie matching case.

5. CONCLUSION

Cookie-matching is now commonplace on the internet, with many publishers, or web-
sites, sharing cookie information with each other (for example, see [Perlich and Da-
lessandro 2013] or [Delo 2013]). We investigated publishers’ incentives to share cookies
and found, surprisingly, that when advertisers value users homogeneously, publishers
agree about whether or not to share cookies— that is, either all publishers want to
share cookie information, or no publishers want to share cookies.

This result can be understood as follows. In both scenarios (cookie-matching or no
cookie-matching), advertisers are paying the expected value of advertising to a user.
With cookie-matching, this expected value is contingent on the user’s history of web-
sites visited. Without cookie-matching, the expectation is taken only over the popula-
tion of users visiting a website. Either way, cookie-matching does not change the nature
of visitors to any website, but rather only what is known about them: this increase in
knowledge either increases advertiser values— in which case all publishers unani-
mously agree that cookie-matching enhances revenues— or lowers advertiser values,
in which case publishers prefer not to match. (Advertiser values can either rise or fall
with cookie matching: it can rise because cookie matching improves the interaction
with the user (e.g., permitting frequency capping), increasing value, or fall because it
identifies a greater supply, decreasing values.)



When advertisers disagree about the relative value of users, however, cookie-
matching can indeed cause the information leakage phenomenon, leading to a dis-
agreement between publishers about whether or not to participate in cookie-matching.
The simplest example illustrating this phenomenon involves two sites and two types
of users. Site 1 attracts only type H users, while site 2 attracts type H and type L.
Suppose some advertisers value only type H users, while the others are indifferent.
With no cookie matching, advertisers buying on site 2 must advertise to both types
of users, reducing the willingness to pay of advertisers who only value type-H users,
so that impressions on this website are won by advertisers who are indifferent. With
cookie matching, site 2 can sell some of the type-H impressions to advertisers that
value this type highly. This increases the revenue of 2, since it increases the price of
some impressions, while keeping the price of the remaining impressions almost intact.
It also increases the supply of known type-H impressions, reducing the demand to site
1. Thus with cookie matching, site 1 loses revenue, and site 2 gains.

Further directions. There is much more to explore in cookie-matching. In particu-
lar, we have set aside the bundling aspects of the absence of cookie-matching; cookie-
matching leads to market fragmentation. This leads to increased efficiency, but it can
also lead to decreased revenue in a thin market. Quantifying the value of cookie match-
ing to each publisher is an interesting open direction. Also, in cases such as the data
leakage scenario presented in this paper, side-payments might overcome the conflict
of interest among the publishers – what mechanisms can be devised to allow the pub-
lishers that benefit from cookie-matching to compensate the losing publishers and buy
their consent to cookie-matching? Finally, understanding the user side of the cookie-
matching game, and in particular the privacy concerns of the user is worthy of further
study.
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