A Theory of Bilateral Oligopoly with Applications to Vertical Mergers

Kenneth Hendricks UBC and University of Texas and R. Preston McAfee University of Texas

Exxon Mobil Merger

- Refining is concentrated in CA
- Retail Sales are concentrated too
- •How to assess the impact of the merger?
- •How to think about captive consumption?

Other Applications

- Trade in spectrum licenses
- BP/ARCO
- IBM's captive chip production
- Defense industry mergers

Questions

- How to treat captive consumption?
- What is the effect of vertical integration?
- With concentration upstream, can an increase in concentration downstream improve efficiency?
- How to generalize HHI to two-sided concentration?

Literature

- Old literature on "bilateral oligopoly"
- Many, many papers with special assumptions about upstream and downstream configuration
 - Foreclosure, raising rival's costs, etc.
- Klemperer & Meyer
 - Invented solution concept
 - No applied results

Review of Cournot

- Profits are $\pi_i = p(\sum_j q_j)q_i c_i(q_i)$
- Manipulating the first order conditions:

$$\sum_{i} \left(\frac{(p(Q) - c'_{i})q_{i}}{p(Q)Q} \right) = \frac{\sum_{i} s_{i}^{2}}{\varepsilon},$$

- Where *s_i* is the market share of firm *i* and å is the elasticity of demand.
- Thus, the HHI measures price cost margins.

Special Theory

- Ignore downstream competition
- Firms have capacities k_i , γ_i
- Capacities lead to payoffs from consumption *q_i* and production *x_i* of:

$$\pi_i = k_i v \left(\frac{q_i}{k_i} \right) - \gamma_i c \left(\frac{x_i}{\gamma_i} \right) - p(q_i - x_i).$$

Special Theory, Cont'd

- Formulation facilitates consideration of mergers
- Merger if *i* and *j* produces a firm with capacities $k_i + k_j$, $\gamma_i + \gamma_j$.
- Net purchase at identical market price *p*
- Value v, cost c exhibit CRS w.r.t. (q,k)

Solution Concept

- Firms can pretend to have other k, γ
- Restricted to acting like a possible type
- Market maps the pretend levels to the efficient outcome (p,q_i) given those levels
- Firm choice is full information equilibrium to the induced game
- Mirrors Cournot black box

Special Theory Solution

- å, η are the elasticities of demand (v) and supply c, respectively. s_i and σ_i are the shares of consumption and production.
- Theorem 1: In any interior equilibrium, $v'_i = c'_i$

and

$$\frac{v'_{i} - p}{p} = \frac{c'_{i} - p}{p} = \frac{s_{i} - \sigma_{i}}{\epsilon (1 - s_{i}) + \eta (1 - \sigma_{i})}$$

Special Theory Solution

- Generalizes to incorporate boundaries
- Yields Cournot as $\eta \rightarrow 0$ and buyers are dispersed
- More generally, value minus cost is:

$$\frac{1}{p} \left(\sum_{i=1}^{n} S_{i} v_{i}' - \sum_{i=1}^{n} \sigma_{i} C_{i}' \right) = \sum_{i=1}^{n} \left(\frac{(S_{i} - \sigma_{i})^{2}}{\varepsilon (1 - S_{i}) + \eta (1 - \sigma_{i})} \right).$$

Special Theory Conclusions

- Only net trades matter
- Captive consumption can be safely ignored
- HHI generalizes to this intermediate good case
- Similar information requirements
- Quantity, not capacity, shares are relevant (true in Cournot, too)

General Theory

- Add Cournot downstream
- Retail price r(Q), elasticity α
- Selling cost $k_i w(q_i/k_i)$, elasticity β
- Production cost $\gamma_i c(x_i/\gamma_i)$, elasticity η
- *θ=p/r*
- $A=1/\alpha; B=(1-\theta)/\beta; C=\theta/\eta$

General Theory

- Firms can pretend to have different capacities than they have
- Firms maximize given the behavior of others and the true capital levels
- Market prices, quantities are efficient given the pretend levels chosen by the firm.

Main Theorem

• The quantity weighted difference between price and marginal cost, or modified herfindahl, is:

$$MHI = \sum_{i=1}^{n} \left[\frac{BC(s_i - \sigma_i)^2 + ABs_i^2(1 - \sigma_i) + AC\sigma_i^2(1 - s_i)}{A(1 - s_i)(1 - \sigma_i) + B(1 - \sigma_i) + C(1 - s_i)} \right].$$

Special Cases

- *A*=0: perfectly elastic demand, yields special theory.
- $A \rightarrow \infty$:

$$MHI = \sum_{i} (1 - i) - \frac{s_i^2}{(1 - s_i)} + \frac{\sigma_i^2}{\eta(1 - \sigma_i)}$$

Effect of Downstream

- The more elastic the downstream demand, the more only the HHI based on net trades matters.
- When downstream demand is very inelastic, MHI is a weighted sum of upstream and downstream HHIs, *with weights given by the intermediate to final good price ratio*.

– Captive consumption matters 100%

Effect of Downstream

- Thus, paper helps resolve the debate about accounting for captive consumption
- Count captive consumption more the more inelastic is downstream demand
- Counts strongly in BP-Arco

Special Cases, Cont'd

- B=0 is a constant marginal cost of retailing
- Any retailer can expand easily

$$MHI\Big|_{B=0} = \sum_{i=1}^{n} \left[\frac{\sigma_i^2}{\eta(1-\sigma_i)+} \right]$$

• Only the upstream matters.

Exxon Mobil Merger

- In California, both gasoline refining and retailing are highly concentrated
- Seven firms account for 95% at each level
- Retail demand is very inelastic

The Exxon Mobil Merger

Company	σ_{i}	S _i	
Chevron	26.4	19.2	
Tosco	21.5	17.8	
Equilon	16.6	16.0	
Arco	13.8	20.4	
Mobil	7.0	9.7	
Exxon	7.0	8.9	
Ultramar	5.4	6.8	

The Exxon Mobil Merger

- Small inaccuracies arise from relying on public data sources
- $\theta = p/r$ is approximately 0.7
- Estimate $\alpha = 1/3, \beta = 5, \eta = 1/2.$

The Exxon Mobil Merger Results

	Pre- Merger	Post-	Refinery Sale	Retail
		merger		Sale
% Markup	20.0	21.3	20.1	21.2
% Efficiency	94.6	94.3	94.6	94.3

The Exxon Mobil Merger Effects

- Small quantity effects
- Significant (1%) retail price effects
- Markup increase
- Virtually solved by refinery divestiture
- Retail divestiture has little effect
- Approach based on naïve market shares mimics exact approach

The Exxon Mobil Merger

- Sensible predictions:
- Relatively elastic retaining means retail merger is of little consequence
- Inelastic downstream demand magnifies effect of upstream concentration
- 20% price/cost margin in line with CA vs. gulf coast prices.

Conclusions

- Generalize Cournot theory to case of intermediate goods
- Similar informational requirements to calculate price/cost margins
- Readily evaluate effects of mergers
- Compute effects of divestitures

Conclusions, Continued

- The more elastic the retail demand, the smaller the effect of captive consumption
- The price/cost margin is a weighted average of:

HHI of the intermediate good market
Weighted (by price ratio) average of the upstream and downstream HHIs (captive production included)

Conclusions

- As the downstream production process gets more elastic, it figures less in price/cost margin
- Vanishing in the limit of perfectly elastic retailing costs.

Conclusions

- Modest information requirements
 - Intermediate to final good price, θ
 - Elasticity of retail demand, α
 - Elasticity of retailing costs, β
 - Elasticity of production cost, η
 - Upstream σ_i and downstream s_i market shares
- Straightforward computations with exact predictions
- Available on my website

Conclusions: Exxon-Mobil

- 20% price/cost margin, 95% efficient output
- Merger increases retail price by 1%
- Retailing concentration less important
- Refining concentration very important

Robustness

- Ignores
 - Entry
 - Collusion
 - Product differentiation
 - Dynamic considerations
- Static theory
- Added competitive fringe to computation