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Competition for agency contracts

R. Preston McAfee*
and

John McMillan**

This article introduces a market for the services of agents into a principal-agent model. The
principal and the potential agents are risk neutral. The contract trades off adverse selection
against moral hazard. In a broad range of circumstances the optimal contract is linear in
the outcome. In an incentive-compatible contract the more able is an agent, the larger is his
contractual share of his marginal output; thus, a more able agent is induced to work at a
rate closer to the first-best.

1. Introduction

® When a principal contracts with an agent for the provision of some good or service, the
contract often does not specify a fixed price. Instead, the contract contains provisions for
price adjustment. For example, when a firm subcontracts some of its input requirements
to another firm, or when a government contracts for the production of a public good, the
contract often provides for the price to be adjusted in response to unpredictable changes in
the supplier’s costs. A salesman’s remuneration is usually dependent, via commissions, on
the amount he sells; but often he also receives a fixed sum regardless of the level of his sales.
The contracts between publisher and author, franchisor and franchisee, landlord and share-
cropper, and patent holder and licensee similarly often have both fixed and variable com-
ponents.! As Arrow (1985, p. 44) notes, “a fee function is a significant departure from the
arms-length fixed-price relation among economic agents usually postulated in economic
theory.” Typically, the fee functions used in practice are simple: contracts involving royalties
or commissions make the payment linear in the output.

At first glance, it might seem that contractual provisions that lessen the agent’s re-
sponsibility for his own actions, such as provisions for price adjustment in response to cost
fluctuations, or fixed payments to salesmen, cannot be in the principal’s interest. To some
extent the costs incurred or the sales achieved depend upon the effort made by the agent:

* University of Western Ontario.
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We thank Bengt Holmstrém, Glenn MacDonald, Paul Milgrom, David Sappington, David Sibley, Alan
Slivinski, Jean Tirole, and the Editorial Board for useful comments. In articles developed simultaneously, Laffont
and Tirole (1985) and Riordan and Sappington (1987) derived results similar to ours.

! A share contract of some historical consequence was the agreement between the Spanish Crown and Chris-
topher Columbus, under which Columbus was entitled to 10% of the output of the territories he discovered (Elliot,
1970, p. 61).
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in other words, there is moral hazard. Such contractual provisions weaken the agent’s in-
centives to act as the principal would want.

The principal-agent literature (Harris and Raviv, 1979; Holmstrom, 1979; Shavell,
1979; MacDonald, 1984; Holmstrom and Milgrom, 1987) provides one possible explanation
for price-adjustment provisions. If the agent is more risk averse than is the principal, then
it is in their mutual interest to share the burden of the risk. The principal, in designing the
contract that is best for him, trades off risk sharing against moral hazard.

Often, however, the parties to a contract are large, and the risks associated with any
one contract are small relative to their overall operations. In such cases contractual provisions
for price adjustment cannot be explained as risk-sharing devices. This article offers an al-
ternative principal-agent model, applicable when both principal and agent are risk neutral.
The model provides an explanation of contractual provisions for price adjustment without
appealing to risk aversion.

We introduce a market for the services of agents. Potential agents compete with each
other for the contract with the principal. The potential agents have different types (for
example, innate ability) that the principal cannot observe: in other words, there is adverse
selection in the market for agents’ services. The principal designs a contract that exploits
the competition among the potential agents and induces them to reveal their types. Instead
of trading off risk sharing against moral hazard, as in the usual principal-agent model, in
this setting the contract trades off adverse selection against moral hazard.?

Arrow (1985, p. 48) in evaluating principal-agent theory notes that the principal-agent
relationships observed in the real world differ from those predicted by principal-agent theory:
Most importantly, the theory tends to lead to very complex fee functions. It turns out to be difficult to establish

even what would appear to be common-sense properties of monotonicity and the like. We do not find such complex
relations in reality.

Holmstrom and Milgrom (1987) make a similar point. In contrast, we shall show that the
contract that, for the principal, optimally trades off adverse selection against moral hazard
can be relatively simple.

In a broad set of circumstances, the predicted contract is linear in the observed outcome.
The contract varies with the selected agent’s type: in an incentive-compatible contract, the
more efficient is an agent, the larger is his contractual share of his marginal output. Thus,
the contract screens the agents according to their abilities, and a more efficient agent is
induced to work at a rate closer to the first-best. But except when the selected agent has the
highest possible efficiency, the contract elicits less than the ideal amount of effort. Despite
the principal’s ability to commit himself to his mechanism, the asymmetry of information
leaves the selected agent with some of the gains from trade.

2. Adverse selection and moral hazard

W A risk-neutral principal wishes to contract with a single agent. There are 7 risk-neutral
potential agents who compete for the contract. The potential agents have different charac-
teristics, denoted z (measuring, for example, efficiency, ability, or expected production cost).
Each potential agent knows only his own type z; the other potential agents and the principal
perceive types as being independently drawn from a distribution G(z), with density g(z).
Thus, differences among the potential agents are assumed to reflect inherent differences in
their productivity, so that, after learning that he has an unusually high or low z, a potential

2 The tradeoff between adverse selection and moral hazard was also modelled in our earlier article (McAfee
and McMillan, 1986). That model was more general than the present one in allowing the potential agents to be
risk averse. But it considered only a restricted class of contracts, whereas the present analysis solves for the contract
that is fully optimal given the informational constraints.
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agent has no reason to revise his estimates of the others’ z values.? Let the support of g be
an interval [z, z].

The principal, having announced the contractual payment terms, asks the potential
agents to report their types. Denote by Z an agent’s reported type. On the basis of these
reports, the principal selects one agent.

The agent who wins the contract chooses a level of effort (possibly multidimensional),
which is not directly observable by the principal. Output x, which is observed by the principal,
depends on the agent’s effort and ability, as well as on a random variable. We leave implicit
in the notation both the effort and the random shock, and depict the agent as choosing an
expected level of output u. We assume C(u, z) is the cost, in monetary terms, to an agent
of obtaining a given expected output u when his type is z. We assume that higher types
have a lower cost and a lower marginal cost: C,(u, z) < 0, C,,(u, z) < 0, where subscripts
denote partial derivatives. We assume also that the marginal cost of output is positive and
increasing: C, (i, z) > 0, C,, (s, z) > 0.4

The assumptions of risk neutrality and independent types imply that the principal
would gain nothing by making the payment to the selected agent depend on the other
potential agents’ reports, or by requiring payments from the other potential agents. This is
so since under these two assumptions any payment scheme that depends on the reports of
the other potential agents can be replaced by one with the same expected payment, given
the selected agent’s type, without affecting the incentives.’ Thus, we assume that the principal
makes his payment to the selected agent depend only upon the agent’s reported type and
the observed outcome. Let S(Z, x) denote the payment function to which the principal
commits himself. Thus, the principal’s return is x — S(Z, x), and the selected agent’s return
is S(Z, x) — C(u, z). The net (social) expected return is u — C(u, z), which we presume is
positive for some z, u.

This problem involves both adverse selection (since the principal cannot observe the
potential agents’ types) and moral hazard (since the principal cannot observe the selected
agent’s action). The purpose of this article is to derive the principal’s optimal payment
function S(Z, x).

3. The agent’s optimization

B In this section we shall examine the contract offered by the principal in terms of the
action u that an agent of type z chooses, that is, in terms of the function u(z). We show that

3 This is the independent-private-values assumption: for a thorough discussion of the meaning and the lim-
itations of this assumption, see Milgrom and Weber (1982, pp. 1090-1098).

4 We thank Paul Milgrom for the observation that depicting the agent as choosing expected output simplifies
the analysis. This can be derived from a more familiar moral-hazard formulation as follows. The agent who wins
the contract chooses an action or effort a € R". Assume that there is a function 4: R™' — R such that the distribution
of output x has the form F(x|h(a, z)); that is, effort and type combine to form univariate measure of efficiency units
of input A(a, z). (An assumption of this sort was first used by Laffont and Tirole (1986).) Let u(A(a, z)) be the
expected value of x, given A(a, z). Let ¢(a, z) be the monetary cost to the agent of his action a. Now define the cost
of u by

Clu, 2) = min ¢(a, z)

subject to
u(h(a, z)=p.

If we assume that u(h) is increasing in A, we may write the distribution of outputs as a function of u,
F(x|p) = Fx|a~'()). Thus, the efforts are entirely suppressed in the notation. The assumption that there is a
univariate measure of efficiency units of inputs 4 effectively means that the problem is isomorphic to one where
agents choose only the mean, as stated in the text.

> Compare with Harris and Raviv (1981), Milgrom and Weber (1982), Myerson (1981), and Riley and Sam-
uelson (1981).
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the function u(z) can be used to characterize how much the agent is paid, without specifying
the contract explicitly. This corresponds to the generalized principal-agent formulation of
Myerson (1982), in which the principal recommends a decision u(z) to the agent of type z,
and the agent finds it in his interest to obey this recommendation.

Consider first the optimizing actions of the potential agents. As Myerson (1982) proved,
by the revelation principle we can, without loss of optimality, presume that the potential
agents are given an incentive to reveal their types honestly to the principal.®

Let pi(z;, ..., z,) be the probability that agent i is selected. Clearly, 0 < p; and
;1 p; < 1. Then, given a report z;, agent i is selected with probability:
Z1
Pi(Zi):f pt(Z—bZi)Hg(Zj)dZn- s dzidzigy,. .., dz,. (N
20 JHi

We shall show in the proof of Theorem 1 that Pi(z;) = G(z;)""!, that is, the principal invariably
chooses the agent with the highest type. The ex ante expected utility of a potential agent of
type z who reports his type to be Z is therefore

(2, , 2) = [ES(Z, x) — Cu, 2)]Pi(2). (2)

The incentive-compatibility condition, to be further examined in the next section, is
w(Z, 1, 2) < w(z, i, 2), for all (Z, u), 3)
where 4’ is the agent’s optimal action, given that he reports z. That is, y’ satisfies 7, = 0 or’
;;ES(Z, x)=C,(u, 2). 4)

We assume that each potential agent has freedom not to participate, so that expected profits
must be nonnegative.
Define a function 4 by
1—-G(2)
A(p, 2) = p— Ay, 2) +—————C.(n, 2), (5)
8(2)
and assume that the functions C and G are such that 4 is twice continuously differentiable.
Define
w*(z) = arg max A(u, z). (6)
In

If A(u*(zp), zo) < 0, let z = zy; otherwise let z be the smallest solution to A(u*(z), z) = 0.

To understand the significance of the functions 4 and p*, note that since the principal
keeps the total gain from trade minus the selected agent’s profit, the principal’s expected
return from potential agent i is

L l{[M_C(I»L, z)1P(z;) — w(z;)}g(z:)dz;. @)

From this and the potential agent’s optimization, we obtain the Hamiltonian

Z = {(lu— Clu, 2)1Pi(z;) — mi(21) }8(2:) = NC.(u, 1) Pi(z))- ®)

¢ Although Myerson’s proof applies to the case of a finite set of types, the same method of proof extends to
the continuum case.

7 Note that (4) presumes that the contract chosen by the principal satisfies 3?ES/du? < C,,. We shall see in
the next section that the optimal linear contract satisfies this condition.
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Now, d\/dz; = —0H/dn = g(z;). Integration of this, with the boundary condition A\(z;) = 0,
yields A = G(z;) — 1. Thus, from (5), we may write the Hamiltonian as

A = Aw, z;)P(2:)8(2:). €))

Thus, A(u, z;)g(z;) is the coefficient of the control variable P;(z;) in the Hamiltonian for the
principal’s problem; it therefore represents the marginal return to the principal from in-
creasing the probability that type z; wins, if it is present, when the incentive constraints are
taken into account. This marginal return consists of the agent’s output minus his cost,
minus any rent he earns, and minus the increase in expected rents earned by the other types
of agents. The latter effect arises because, by increasing the probability that a report of z;
will win the contract, the principal makes it more attractive that higher types pretend to be
z;. To prevent this the principal must improve the terms for all types higher than z;, and
thus raises their rents.

If potential agent i chooses his report to maximize his expected rents, the envelope
theorem applied to (2) yields dr/dz; = —C,(u, z;)P;i(z;). Thus, each unit increase in P;(z;)
increases the rents earned by all types higher than z; by an amount equal to —C,(u, z;). We
can now interpret the expression A(u, z;)g(z;). Consider the definition of the 4 function,
equation (5). The first two terms, multiplied by g(z;), represent the direct increase in net
revenue of increasing P;(z;) while holding all of the other P(z)’s constant. The remaining
term in (5), multiplied by g(z;), is (1 — G(2))C,(u, z). By the envelope-theorem result just
stated, this term subtracts the increase in rents for all types higher than z;, weighted by the
frequency of such types. The sum of the direct effect and the incentive effect forms the
coeflicient for P;(z;). Since this incentive term represents the rents the principal must pay
the selected agent because of the potential agents’ private information, we shall refer to it
as an informational rent.

Given the interpretation that A represents the expected net return to the principal, one
might predict that the principal’s optimal choice of contract selects the best agent whose
type exceeds z and induces expected output u*. Theorem 1 shows that this is indeed
the case.?

Theorem 1. If first, dA(u*(z), z)/dz = 0; second, the agent with the highest type is selected
if his type exceeds z, and otherwise no agent is selected; and third, the selected agent, with
type z, is induced to choose u = u*(z), then the contract is optimal for the principal.

Note several implications of Theorem 1. First, the efficient level of effort is defined by
u.(2) satisfying
1= C(pe(2),2)=0. (10)
Thus, since
1—-G(2)
&(2)

we have less effort than the full-information optimum for all but the highest type z,.° The
reason for this inefficient level of effort is that, as noted, the principal’s information cost—
the cost of the incentive-compatibility constraint—is —(1 — G(2))C,(u, z)/g(z), which is an
increasing function of effort, u. Thus, by lowering the induced effort level below the first-
best, the principal captures some of the informational rents.

A second source of inefficiency arises because the principal will not contract with any
agent whose type is less than z. In a full-information world, in contrast, the principal would
contract with any agent satisfying u.(z) — Clu.(2), z) = 0; that is, where there are positive

1= C.(u*(2), 2) =~ Cz(1*(2), 2)>0, (11)

8 The proofs of all of the following results are in the Appendix.
® Holmstrém (1983) and Sappington (1983, 1984) showed that the combination of adverse selection and
moral hazard can lead to an inefficient outcome despite the risk neutrality of the agent.
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gains from trade. The cut-off value z is excessive for two reasons. The principal wishes to
reduce the informational rent that he gives the selected agent; in this respect z works exactly
as a reserve price in an auction (Harris and Raviv, 1981; Laffont and Maskin, 1980; McAfee
and McMillan, 1987; Milgrom and Weber, 1982; Myerson, 1981; Riley and Samuelson,
1981). In addition, there is an effect not present in the auction model, namely the agent’s
choice of effort. An insufficient amount of effort is evoked from a z agent and, as a result,
z is larger than it would be if the principal were constrained to offer an efficient contract to
any agent selected.

Third, the desired effort u*(z) and the cut-off z are invariant to the number of bidders
n. Thus, the only effect of increasing # is to alter the distribution of selected types (being
the largest order statistic from a sample of #); increasing n does not affect the extent of
inefficiency, given the best agent.

Fourth, by equations (5) and (6),

1-G
0= 1- C(w(2), )+ =22 €, (w2, 2). (12)
8(2)
Thus,
d1— 1—
cuz(l —— G(Z)) _1-6@) Cuzz(1*(2), 2)
* 9z g(2) 8(2)
dp*(2)
dz 1-G(2) (13)
—C(1*(2), 2) + 20 Cluz(n*(2), 2)
Hence, a sufficient condition for expected output to increase with the selected agent’s type
(du*(2)/dz = 0) is
d( 1-G@)
az(z @ )20, (14)
and
Cealit, 2)=0. (15)

4. Linear contracts

B From Theorem 1 the principal maximizes profit if he finds any contract inducing honest
reports, inducing a choice of effort © = p*(z), and selecting agents only of type z = z. The
main result of this article is that in a wide variety of circumstances this can be accomplished
with a contract that is linear in output. We assume throughout this section that A(u*(z), z)
is increasing in z (compare with Theorem 1).

Theorem 2. A contract of the form S(Z, x) = a(Z)x + B(Z) implements the optimum for all
n = 1 if and only if

iCM(u*(z), 2)=0. (16)
dz

If so,

S(2,X) = Cu(w*(2), 2)x— u*(2)) + Cu*(2), 2)— G(&) ™" fz G(s)" ™' C(uX(s), s)ds.  (17)

The proof (in the Appendix) first shows that, if a contract is linear, it must have the
form given in the theorem. Then it shows that the agent will select an action g that is a
function of both his reported type Z and his true type z. Finally, it shows that, given the
condition (16), the contract (17) induces any potential agent to report his type z honestly.

The sharing term « equals C,. This has the commonsense interpretation that the agent
equates his marginal cost of effort, C,, to the expected marginal benefit that accrues to him
(since the agent keeps a fraction « of the expected output u).
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An unsurprising corollary of the theorem is that, since the contract allows a more able
agent to keep a larger share of his marginal output, a more able agent will work harder.

Corollary 1. If da/dz = 0, then du*(z)/dz = 0.

The converse does not hold: only if du*/dz is sufficiently positive does it follow that
do/dz = 0 and that therefore a linear contract works.

Why is the contract linear? As shown by Theorem 1, the principal’s problem reduces
to finding an incentive-compatible contract that evokes the desired effort u*(z). In general,
many different contracts will achieve this. The point of Theorem 2 is that, in the stated
circumstances, among those many contracts is the linear contract.

Thus, for a contract linear in output to be optimal for the principal, the sharing term
o must increase with type. In particular, a more able agent faces a larger « and thus bears
a greater responsibility for his own actions. Incentive compatibility is the reason « must
increase with ability. If « increases with ability, then it does not pay a potential agent with
low ability to claim that he is more able than he really is, because he is then penalized by
having a contract that makes his payment sensitive to his output; since he actually has low
ability, his output, and therefore his payment, will be low. The same argument in reverse
shows why an able potential agent would not claim to have low ability when « increases
with ability.'°

An agent who reports his ability level to be Z and is selected is paid an amount
B(2) + a(Z)x in exchange for his output x. The lump-sum term 3(Z) can be interpreted as a
salary or fixed payment; the sharing term «(Z) can be interpreted as a royalty or commission
rate or an incentive scheme. Although «(2) and B(Z) depend upon the agent’s reported
ability, they are fixed for the selected agent. The sharing term «(Z) satisfies 0 < a(2) < 1. It
increases with the agent’s ability. Thus, the more able is an agent, the larger the fraction of
his marginal output he is allowed to keep. As a result, a more able agent is induced to work
harder.!! If the agent has the highest possible ability, then the principal sets his sharing term
equal to unity. (From (5), (6), and (17), a(z,) = 1.) Thus, the most able possible agent keeps
all of his marginal output and works at his first-best rate.

As the market for agents’ services becomes perfectly competitive (# = o), the selected
agent’s expected profit goes to zero. With an infinity of potential agents, the selected agent
has the highest possible ability z, with probability one. In this case the agent keeps all of
his marginal output. Then 8 = C(u*(z)), z;) — u*(z,). Thus, 8 is in this case negative: the
agent pays for the right to do the work. The size of this payment is such that in expectation
the agent produces just enough to cover his initial payment to the principal of 8 plus
his cost.

Some further insight into when linear contracts work is given by the following result.

Corollary 2. The linear contract (17) is optimal if and only if
d [(1-G(2)
dz\ g(2)

To understand this condition, recall that the principal’s information cost is
—[1 — G(2)]C,(u, z)/g(z). Thus, (18) says that the marginal information cost declines when,

)Cuz(u*<z), 220, (18)

10 That the sharing provisions in contracts can serve as a screening device has been discussed before in the
context of labor contracts by Pencavel (1977) and in the context of sharecropping contracts by Hallagan (1978).

! The size of the combined self-selection and effort effects can be estimated by using data from labor markets
in which incentive schemes (« > 0) and fixed salaries (a = 0) coexist. Pencavel (1977), using data on punch-press
operators, found that piece-rate workers earned on average 7% more than time-rate workers; Seiler (1984), using
data from the clothing and shoe industries, estimated the earnings difference to be 14%. Marriott (1961, Ch. 6)
presents a variety of statistical, case-study, and experimental evidence on the extent to which incentive payments
increase output. He reports output gains of 50% or more.
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adjusting effort optimally, ability is increased. Information costs become relatively less im-
portant as the ability of the selected agent increases.

Condition (18) involves third derivatives such as C,,, and C,,., so that little more can
be said about it in general. For a simple special case, suppose that C(u, z) = (1 — 2)u — u>
Then (18) reduces to the relatively mild requirement that the inverse hazard rate
[1 — G(2)])/g(z) be decreasing in z. For this example, one can show that the difference
between the equilibrium output and the first-best output is equal to the inverse hazard rate;
and the deviation of equilibrium effort from the first-best declines as ability increases.'?

5. Nonlinear contracts

B We digress now to examine the nature of the contract when the principal is forced to
use a nonlinear contract because (16) is not satisfied. The advantage of a nonlinear contract
is that it allows the principal to use more of his knowledge about the distribution of x in
inducing the agent to choose the desired action p*(z).

For the purposes of illustration, we consider in this section only the extreme case in
which the outcome x is nonstochastic: thus x = u. In this case the principal can condition
payment on the choice of effort: thus, he pays the agent only when u = u*(2), given the
agent’s report 2. This forces an agent of type z who reported his type to be Z to choose an
effort i = u*(2).

Theorem 3. Incentive compatibility is satisfied regardless of the number of potential agents
n if and only if

w¥(z) = 0. (19)
Thus (by comparison with Theorem 2), when
Cuz(1*(2), 2)
0<u¥(z) < —22—2— 20
Coui(2),2) 20

there may be nonlinear contracts that implement p*, but no linear contracts. Even when
X is stochastic, contracts such as forcing contracts (Holmstrom, 1982) may implement u*
when linear contracts are not feasible.

The uncertainty in x strengthens the case for using linear contracts, since the infor-
mational requirements (the principal need only know the mean of x, and not the entire
distribution) are reduced relative to other contracts.

6. Conclusion

B This model predicts that a range of different contracts, optimally linear, will coexist in
the market for agents’ services. The sharing provision in a contract both screens the potential
agents and evokes effort from the selected agent. There is, however, a tradeoff: the greater

12 Laffont and Tirole (1986) analyzed the case of a single agent with adverse selection and moral hazard and
showed that the contract is linear in the agent’s type. Laffont and Tirole (1985) analyzed competition for contracts
in a model similar to the present model, except that the payment to the winning bidder depends not only on the
winning bidder’s reported ability, but also on the second-highest reported ability: this scheme has the advantage
that, like the Vickrey auction, the bidding game has a dominant equilibrium. In the model of Riordan and Sappington
(1987), the potential agents bid for the contract after having observed imperfect signals of their types; only after
the contract is awarded and fixed costs are incurred does the winning agent learn his type. Results similar to those
of Laffont and Tirole and the present article are obtained, except that the two-stage structure of the adverse selection
and the absence of moral hazard result in the optimal contract being nonlinear. Rogerson (1987) gave an alternative
derivation of the linear-contracts result. Melumad and Reichelstein (1986) exhibited circumstances under which
having the agent report his type does or does not improve the efficiency properties of the contract. Baron and
Besanko (1987) examined the effects of the agent’s risk aversion in a contracting model with both adverse selection
and moral hazard.
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the diversity in the potential agents’ abilities, the less successful is the contract in inducing
effort. In an incentive-compatible contract, the more able the agent, the larger the fraction
of his marginal output he keeps, and thus the harder he works. Thus, both earnings and
output increase with the sharing term.'3

The striking feature of the contract is that in a broad range of circumstances there is
an optimal bidding-contracting arrangement in which the contractual payments are linear
functions of the output. Linear contracts have obvious practical advantages in ease of use.
For this reason, and because of the analytical simplicity of linear contracts, contracting
models sometimes impose linearity as an ad hoc assumption (McAfee and McMillan, 1986;
Stiglitz, 1974; Weitzman, 1980). This article shows that there are cases in which the optimal
contract is linear in the output (although it is not linear in the agent’s ability). Payment
schemes used in practice that involve royalties or commissions are usually linear in the
outcome.

Appendix
B Proofs of Theorems 1-3 and Corollaries 1 and 2 follow.
Proof of Theorem 1. From the envelope theorem and (2)

dr_or

dr 2 e Cupe (A1)

7=z

Thus, the principal’s expected profit is

v=72 f ) [u(z) — ES(z, x)]1Pi(2)g(2)dz
i=1V20

I

3 [t - @, 1P 3 [ gz
i=1Y% i=1Y%

) Z) dm;
—f (1—G(z))-£dz]

0

2 fﬂ [u(2) — Cu(2), 2)IP(2)g(2)dz + Z| mi(z)(1 — G(2))
i=1 Y20 i=1

21 1-G(2)
8(2)

-3

i=1vY20

Calu(a), Z)]Pi(Z)g(Z)dz— S riz0)

i=1

[p(z) — Clulz) )+

=5 [ Auz), 2Pz )z~ S wiz0)

i=1 Y20 i=1
[ B, 2ne 2 oGz dz itz 20 a2
20 20 =1 Jj=1 i=1
From simple pointwise optimization
i (1(20), 20) =0,
1 if  (V))zizz; and  A(w(z),z)=0

pi(zl""9zﬂ)=[ .
0 otherwise,

and u*(z) = arg max A(u, z). Q.E.D.
"

13 A system used by IBM for remunerating salesmen reported by Gonik (1978) resembles this menu of linear
contracts. Different sales territories have different potentials (z in our notation); also, actual sales vary with the
salesman’s effort. Each salesman is asked to forecast sales in his territory. The commission rate and the fixed
payment vary discontinuously with the forecast. The commission rate is set at one of two levels, with the higher
rate applying when the forecast is relatively high; with the higher commission rate, the fixed payment is relatively
small.
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Proof of Theorem 2. First, consider the implications of linearity. The agent who reports Z, has type z, and chooses

effort u obtains rents
w = [ES(2, %) — Cu, 2)]G(E)"

= [a(Z)r + B(2) — Clu, 2)]GE)"". (A3)
Thus, necessarily, if the agent is honest and the contract induces effort 4 = u*(z2),
a(z)— C,(u*(z), z) = 0. (A4)
By the envelope theorem,
% =—C,(u¥(2), 2)G(2)"". (A5)

Integration of (A5) with 7r|£ = 0 and (A3) and (A4) yield (17). Thus, we may restrict attention to contracts of the
form (17). We first show that (16) is sufficient, and then necessary.

Sufficiency. Assume that d(C, (u*(%), 2))/dz = 0. If the contract (19) is offered, the agent’s rents are

w=[C,(u*(2), 2)(n — u*(2)) + C(u*(2), 2) — Clu, 2)IG(EY" — f ’ G(s)"'C,(uX(s), 5)ds (A6)
and

g—" = [C,(1*(2), 2)— Cy(w, DIGE)™!
w

2

2—721 =—C,,.(1, 2)GE)" ' <. (A7)
I

Thus, the agent chooses £ satisfying
C,(k*(2), 2)= C, (i, 2), (A8)
d
—C,(u*(3), 2
di @ w(1*(2), 2)

& G *

di Culin2)
&z Cul) (A10)

o a di Fe] di
i G(%)H[(E CH(3), 2))(;: — uHE) + CuuC), 2)(d—;‘ - #*’(f)) FE OO, - Gl )
(= Dg@BGE(C,(4HE), ) — w*(E) + CuHE), 2)— Clls 2] — GEYCou*(2), 2
I}
=G| 3G, D)3 @) | - (r DRGIGEI G W, DR~ 4E) + WD, B G )
(A11)
Clearly,
ol o Al2
(92 .. — Y ( )
2. A dp
e G(z)"-'[a% Cw?). %) %‘;‘] Fn— 1>g<%>G<2)"*2[[cu<u*(f), B G N .G z)] S0, (A13)
Thus,
o <
E =0 as z=1Z,

and this forces Z = z to be optimal. Given u = p*(z) and Z = z, we then have

T= —f G(5)"'C,(u*(s), 5)ds =0 as z2z,

so that the correct agents are selected.
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Necessity. 1t is clearly necessary that
&

9020z

7=z

and that this hold for » = 1, since we required it to hold for all n. By (A13) this entails

i) e
_C *( 5 2 -
P W(u*(2), 2) 3z

=0
and by (A9) and (A10), we have -
2 cwe, =0
is necessary. Q.E.D.
Proof of Corollary 1.

0 Sdizc“(“*(z)’ 2)=C,u¥(2)+C,,.

Since C,, <0,C,,=0,pu¥ =0. Q.E.D.
Proof of Corollary 2. From (6)

1-C,(uX(2), 2) + 1-6) Ci:(1¥(2),2) =0
8(2)
so that
1-G(2)

a(2)= Cu(wH(2), ) = 1 +

2 Cz:(u¥(2), 2)

is increasing if and only if
d1-G(2)
dz g(2)

Coz(u*(2), 2)) 2 0. Q.E.D.
Proof of Theorem 3. An agent who reports Z obtains profits of
r(2,2) = GEP QW) - @), 21— [ Gy Caw(s), 9ds

by (4) and integration. We have

or
Y GEY"'(Culw*(2), 2) — Culp*(2), DIe¥(2) + Co(p*(2), )] — G ' C.(u*(2), 2)

+(n—1G(E)"gR)C(u*(2), 2) — Cu*(?2), 2)].
Clearly, d/dZ|;-, = 0. Moreover,

Fr . N VA AR A A
Py —G(2)"'[C(u*(2), ¥(E)] + (n— DG(EY 2 (R)C.(u*(2), 2).
To obtain necessity, note that 8*r/dz02|;-, = 0, for n = 1 is necessary, so that u*(z) = 0.
For sufficiency, note that if u*(2) = 0, then 8*r/dz02 = 0 for all (2, z), so that dx/9%2 = 0 as 2 = z, which
forces Z = z. Q.E.D.
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