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Abstract The Internet backbone of many corporations carries twoskifdtraffic: urgent
and delayable. Shifting some traffic from peak periods tteyalreduces capacity require-
ments. We consider the case of managing the delayable tigfia admission control (AC)
system. AC gets link utilization feedback everyseconds. Delayable opt-in sources ob-
tain permission from AC to transmit for up to seconds at a rate not exceeding a limit
imposed by AC, renewing permission as needed. Urgent tiaffiasses AC. AC must al-
locate bandwidth to competing delayable traffic sourcespkifiee that among all throttling
transformations of flows that achieve a desired mean aggréigav, rate limits on flows
minimize the variance of their sum. Furthermore, a singte lianit common to all flows
achieves the optimum. Thus, for a single link, AC must decdea single rate limit for
all delayable sources in eachsecond cycle. We evaluate different policies that setale r
limit dynamically in an empirical setting using netflow reds on a link on the backbone of
Yahoo!. Using historical data, we also derive the best pbsseduction in capacity of this
link using a closed-form solution to an assignment probléra.show that AC can achieve
capacity reduction close to the best possible reduction.
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1 Introduction

Many large corporations have a wide-area network thatestvo kinds of traffic: urgent
traffic and traffic that can be delayed by a few minutes to a few$ There is a big potential
for automatic traffic shaping on these corporate networlsaggume that some producers of
delayable traffic can be incented to opt into a scheme ofthaitettling by an external agent.
We assume that we can trap calls to TCP/UDP at the operatsigraylevel on the source
and that we can rewrite the called methods to communicateamitadmission control (AC)
server. While we assume that application software thatrgée® delayable traffic does not
itself change, we do assume that it can be relinked with a ii@ary. In contrast, sources
of urgent traffic or receivers of any type of traffic need narebe aware of the admission
control mechanism.

We focus on a single link. A variety of sources of traffic usis tnk. Our mechanism
involves an AC that receives periodic feedback about tréfiie from the link. Sources can
ignore AC (such sources are called class-1); those thatsehooare compelled to use AC
(such sources are called class-2) ping AC periodically ésnpssion to inject traffic into the
link. Our scenario is that of an intranet cloud where somé (ot all) senders participate
in admission control and there is considerable amount afygllerant traffic originating
from them. The problem we address is the design of AC’s intitns, as well as the needed
capacity on the link.

1.1 Prior work

There is extensive literature on the topic of bandwidth ngengent. In this short overview
of the literature, we discuss papers that attack a similalslpm as ours with a range of ap-
proches. Many papers propose protocol alterations and m&nate their viability. For ex-
ample, TCP-LP Kuzmanovic and Knightly (2003) , TCP Nice \@@kamani et al (2002),
and ImTCP Tsugawa et al (2006) are protocol alterations dekgground transfer support.
Our approach stemmed from the view that adaption of new potgas difficult in our envi-
ronment and that it would be desirable to stop the traffic feontering the network from the
side of participating senders. Our approach is implemdmtatth simple user-space sender-
side trapping of appropriate library calls, and hence istuittially less invasive of existing
systems and easier to implement. We also run simulationbyfedal data rather than sim-
ulated network flows, both validating the need for backgtbtransport control generally,
as well as providing some reasonable design parameteratliergoublished literature, fair-
ness is assumed to be a desired criterion while we show tinaé$ais a desired criterion,
as it reduces variance allowing improved network utiliaati

In Key et al (2004) the authors present an application-lexetiver-side control mecha-
nism, while the approach we consider here is an applicdéiezi-sender-side control mecha-
nism. Our experiments with real data suggest that very tightrol delays on the order of 10
seconds or less are required in order to effectively dedl veil-world demand burstiness.
This timescale is substantially shorter than the controkticales demonstrated in existing
nsexperiments for this approach, as well as TCP-LP.

In Kokku et al (2007) the authors propose an improvement, HAR TCP by installing
gateways and relays, which can be used as an overlay to a TsI&hsyHARP uses real-
time delay feedback to re-route packets and optimize thearkt Only non-urgent traffic is
delayed, as recognized by the gateways. Substantial sp@egdage achieved in simulations.



One downside is the installation of additional network etk and the need to reassemble
and reorder packets, which no longer arrive in order.

In Benameur et al (2001), a similar problem of admissionmbmf two types of traffic,
streaming and elastic, is considered. Their goal is to gighdr priority to streaming traffic
by rejecting elastic traffic when necessary. In particulagy use rough estimates of the
bandwidth of an incomingewelastic flow, and then accept or discard the elastic flow based
on the bandwidth estimate. In contrast, our method exjlicbmmunicates with class-2
sources about their bandwidth limits and thus avoids dikogrpackets.

Traffic control for elastic flows is also the focus of Yang amd\@ciana (2002) . Here,
all flows have the same priority, and the objective is to impnaser-perceivegerformance
by minimizing average bit transmission delay. Althoughwork focuses on a very different
goal of minimizing peak traffic volume, we do penalize traffielay by a carefully defined
loss function (cf., Section 4).

In Kumar et al (2000), the authors describe a successful ariblé implementation
of a TCP connection admission control of a low-speed WAN s&dimk that connects a
high-speed campus network to internet. Their implememtatses Ethernet packet capture
for analyzing the traffic on the link and IP Masquerading flacking new connections and
slowing down existing connections. In our approach, we dyinally publish rate limits to
senders that choose to participate voluntarily in the asiimiscontrol scheme. Participating
senders delay traffic on their end.

A scheme in which a given transport flow is split at the packe¢l into a high-priority
and a low-priority subflows is described in Venkataramarl €2@08). In their Priority Lay-
ered Transport protocol, the high-priority subflow opesatenservatively with legacy con-
gestion control whereas the low-priority subflow favors r@ggiveness to fairness. Their
approach involves modifications on the receiver end as whktreas ours does not.

1.2 Outline

The rest of the paper is organized as follows. In Section 2jevive a closed-form solution
to optimal retrospective traffic shifting, given histofiteaces of different classes of traffic.
In Section 3, we consider the case of a single link with mldtgpurces of two classes of
traffic (urgent and delayable). We show that even when we knawvance the probability
density functions of flow rates of the delayable sourcem@glsirate limit uniformly applied
to them minimizes variance. This considerably simplifiess sblution: we just need to de-
termine the rate limit dynamically (evenyseconds) based on future projections of urgent
traffic, network status, past requests, and the target itgpaitization. We describe the AC
formalism and an evaluation metric in Section 4. In Sectiow& present a simple baseline
rate limit algorithm, fashioned after the AIMD (additiveciease multiplicative decrease)
scheme used in TCP. Section 6 describes a machine learmpngeai to admission control.
Section 7 presents experimental results. Finally, we cmgcthe paper in Section 8.

2 Optimal Retrospective Traffic Shifting

Before building a traffic shaping mechanism, we would likektow upfront whether the
effort is justified. For traffic shaping to work, we first needite able to identify different
classes of traffic. We collected traffic traces on links ofYaboo! backbone. A traffic flow
trace contains, among other things, the source IP addmsgsgesport, destination IP address,



destination port, router IP address, input interface IDpouinterface ID, flow start and
end times in milliseconds since a reference time, trangmatiocol (UDP or TCP), and
some flags. At Yahoo!, there is a way to identify data arcBivald business-continuity-
related file copies from one data center to another. Sudictedfvays originates on specially
designated ports. Based on the source port numbers, wéfields$gaffic into two classes:
class-1 (urgent) and class-2 (some delay tolerable). @usification is not comprehensive
in the sense that we may have missed many sources of claafi@ fFhis classification of
traffic based on port numbers is done just for a retrospestiwdy of whether slowing delay-
tolerant traffic is worth the effort; we do not assume that perational admission control
mechanism must classify traffic this way. Rather, we assimaesome senders choose to
participate in admission control and request permissidirate threshold from an AC server
before sending delayable traffic.

Traffic volume

0 200 400 600 800 1000 1200 1400 1600
Time in minutes

Fig. 1 Per-minute volume of two classes of traffic (“C1” for urgentddC2” for delayable) on July 1, 2009
in a particular link at Yahoo! backbone.

Figure 1 shows aggregated traffic in these classes on arcéntaion the firm’'s back-
bone! Since capacity planning is link-specific anyway, we will fiscon a single link in
the rest of the paper. It is noteworthy that class-1 trafficasuniform over time and offers
potential to reduce bandwidth capacity. Before giving aetbform solution to the potential
reduction in the proposition below, we first introduce soroation. Let time be discrete,
from 1 toT. Let X(t,s) be the traffic that originates at tinteand must be transported by
time s. We seek the minimum capaci that handles all transport:

Proposition 1 The minimum required capacity for handling all transpoitatis

y" = max 1 ix(r,s)

1<t<s<T S—t+1;

Proof  Note thaty?_; X(r,s) is the total traffic that must be transported durjfng] which
consists ob—t + 1 periods. Thereforey;_; X(r,s) < y*(s—t+ 1) for all t,s. By definition,
y* should be the smallest number that satisfies these indgealitherefore it equals the
maximum of these lower bounds. O

As an example of using the above proposition, consider tieedary traffic depicted in
Figure 1. Urgent (C1) traffic comes undéft,t) since such traffic cannot be delayed. We can

1 There is much variability in volume and class-ratios acdmsss.



assume a maximum permissible detbfipr C2 and calculate the minimum capacity required
to clear all traffic under these conditions. C2 traffic oraging at timet must be cleared
during [t,t +d], hence becomes part ¥ft,t +d). Figure 2 shows the gain in capacity as a
function of maximum admissible delay in C2. The gain is deﬁae%, wherey is
the minimum capacity needed if no delay is allowed.

Capacity Gain (percentage)

permissible delay in seconds

Fig. 2 Retrospective capacity gain computed by applying Projosit to the one-day traffic depicted in
Figure 1.

In this case, there is substantial benefit in delaying c2asaific. However, the benefit
depends on the relative magnitudes of class-1 and clasdfi2 tind how they arrive in time.
It is possible that some links on the backbone see clasdfic teémost exclusively and
therefore will not benefit from this type of admission cohtro

3 Rate Control of Many Sources

It is clear from the previous section that, even with a pdesiinderestimate of class-2
traffic, we can benefit substantially from delaying classaffic by a few seconds. Let
be the target capacity of the link (perhaps set to, say, 90%eofrue installed capacity).
The goal of admission control is to inject class-2 traffioittte link such that class-1 and
class-2 traffic together never exceeaxrldut stays close to it as much as possible. In other
words, AC must allocate bandwidth to individual sourcedla$s-2 traffic in such a way that
class-2 throughput is maximized while the link is not ovaded. How should we allocate
bandwidth to class-2 sources? It is clear that we would liledaggregate flows to be as
uniform as possible, other things being equal. We model @sirel for steady traffic by
minimizing the variance, subject to a mean flow of traffic, ethimay equal the available
head room. For the moment, assume that we know the head h@oactly and that there
aren controllable sources (of class-2 traffic). Sourgenerates flovi;, a random variable.
Suppose we knovii(x), the joint probability density function of = (X1, Xz, -+, %n). Given
this extensive knowledge, could we design a rate-thrgttiransformation specifically for
each source in order to reduce variance in the aggregate ftopfnciple, the throttling
transformation on a particular source could depend on the rdes at other sources. But
it is impractical to measure the flow rates for all sourcesdjost flow rate of an individual
source. Thus we assume that throttling transformation @fi@dridual source depends only
on its own flow. Formally, a throttling transformation is arBbmeasurable functionthat



reduces the flow rate: € t(x) < x. What is the optimal form of (-)? Is it continuous? How
does it depend of? The optimization problem is formalized as

i E((X) —E(t(X)))?

subject to

The answer turns out to be exceedingly simple:

Theorem 1 For all throttling transformations,jton flows with a mean aggregate flow of
h= 5, Eti(X), there exists a rate limit r, such that settingX) = X for X <rand {(X) =r
otherwise minimizes the variance of the sum of flows.

Proof Let fi(-) be the marginal probability density of traffic at souic&ecausd;(X) =
ti(X) and because of the constraint on the aggregate mean, timizgiton problem is

equivalent to minimizing
1 00
23 /O £2(x) fi (x)dx

subject to the constraints. We will ignore the nonnegatieibnstraint for simplicity. The
Lagrangian is

2y [ Rotioodx+
S [ HOIm (-0 fgdx -+

A (hZ/:ti(x) fi(x)dx)

By Euler-Langrange, we have
ti(X)+Hi(x) —A =0

wherey; (X) > 0 with equality whenever(x) < x. Therefore eithet;(x) = xor A =t;(x) <x.
In other wordst;j(x) = min{x,A }. O

Remarkably, the throttling transformation on each sows&imply a rate cap thatis common
to all sources. Note that we did not assume that the soureeim@dependent. Were we to
know f;(x), we would solve the following for:

h— nr—Z/Or/Oxfi(t)dtdx

In practice, we would not knowi(-) a priori. Whereas one could attempt to construct es-
timates of fi(-) for each source online, this theorem suggests that we caplysiuljust
the rate limit online based on feedback from the link. In tlegtrsection, we describe the
experimental setup based on actual netflow records of a tinkahoo!'s backbone.



4 AC Formalism and Evaluation

We assume that feedback from the network is in the form of litilzation, centrally col-
lected at AC directly from network devices periodically,ceneveryt seconds. The link
feedback is in the form of total bytes transferred since fedlied, and does not contain
class-level information. In our setup, sources request@@érmission to send bits. Given
that we trap calls below the application layer, this perioissequest does not include the
total number of bits to be transported. The request contams$P address and port of the
source as well as the destination. The AC grants permissidhe form of a short-term
(up to T seconds) nonexclusive lease of bandwidth with a rate lifiie source can send
flows not exceeding the rate limit for the duration of the &aad must return to AC for a
new lease to continue transport as necessary. A rate linziéiaf means pure delay. In this
setup, control overhead occurs roughly eveseconds — in the form of polling the devices
and communication between AC and sources. Traffic is tleabtl the sources, not when in
transit. AC does not know the round-trip times from sourceddstinations. The only infor-
mation available to AC is the link utilization status fromuters and the past requests from
sources, and of course historical off-line data in the fofimadfic traces that may be used to
model arrivals of both classes of traffic. In our scheme, Theaund oft seconds, the AC
determines two numbers: a rate aapnd the maximum number of sendexdt allocates
r to the firstn senders seeking permission to send and 0 to any subseqqgeatst®in that
cycle.

While variance of the combined traffic from all throttled soes motivated us to use
a common rate cap as a control mechanism, the efficacy of théssidn control must be
measured in terms of throughput and link-overloading. Ilgebnk utilization stays very
close to the target utilization set by network operatorsusTive would like to penalize
deviations from the target utilization. However, excegdihe target capacity can lead to
network instability and thus must be penalized more thaauinderutilizatios. Moreover,
we penalize link underutilization only when there is cl@staffic that is waiting to be
transported. For time running from 0 1g and with a target capacity our loss function is
as below:

1 T | b
L= = z t t t
Tt (Cl( )702( )7C7 ( ))

whereb(t) is the total buffered traffic at class-2 senders at time(t) is the class-traffic
on the link att, andI(-) is the instantaneous loss function below:

a(a+b—c) ifa+rb>c

I(a,b,c,d):= { min{c— (a+b),d} else

In the abovey is the penalty factor for exceeding the target capacityhtexperiments
below, we usedr = 10000.

5 AIMD Heuristic

Analogous to the “additive increase multiplicative desefaheuristic in TCP implemen-
tations, we implemented a simple reactive control polict tdjusts the total bandwidth
allocated to all requesting class-2 sources up or down basduhk utilization feedback.

2 This is reasonable since opt-in controlled sources do mettea much about delays in the discretionary
traffic that they send via AC.



Algorithm 1 AIMD Input: average target utilization, additive incremend, multiplicative
decremend, current utilizationu, current rate cap, current number of permits, number
of entry requests Output: (rate cap, number of permits)

if (u> p) return €d, nd|)

if (du > 0) return €722 r)

return €°,r)

The idea is to increase the total bandwidth additively ifdlerage link utilizatioru is be-
low a targetu and decrease it multiplicatively otherwise. The total adiied bandwidth is
divided equally across permitted senders. The policy haetharameters: target link uti-
lization u, additive incremeng, decrement factod. The algorithm tracks the current rate
capc, the current number of permits and entry requestsreceived in the prior cycle and
calculates the new rate cap and number of permits as display&lgorithm 1. Note that
AIMD does not increase class-2 allocation unless utilarats below target and utilization
gradient is positive. Without the latter condition, ratpsaould keep increasing even when
currently active class-2 sources do not use up the allatatio

6 Reinforcement Learning

In admission control for Internet traffic management, ndy aloes an AC action (such as
additive increment and multiplicative decrement in AIMDtlre previous section) result in
an immediate cost but it also affects the future status ofathele system. For example,
setting the rate cap too low may require a long period for yfstesn to take a sequence of
additive increment actions to raise it back to an appropiiatel; on the other hand, setting
the rate cap too high may be helpful for transmitting all pegcclass-2 traffic, but can
be risky for the next few cycles if class-1 traffic increaseisssantially. Therefore, optimal
control in this problem has sequentialnature that requires the controller to take actions
that balances immediate and future loss. This problem isralt modeled as a sequential
decision making problem and reinforcement learning (RLi}@uand Barto (1998) can be
applied to optimize the controller.

In sequential decision making, a controller repeatedlyoske an action based on infor-
mation it observes about the system (called a “state”).rAtking the action, the controller
receives an immediate loss and observes the next state sfystem. We call the tuple
(s,a,1,5) atransition wheres € Sis a statea € Ais an action] € 0 is the immediate loss,

s € Sis the next state, anBandA are the sets of states and actions, respectively. The goal
of RL is to learn from a set of transitions to find an optimalipglt* : S— A, to minimize
the total loss whem* is followed. With a discount factoy € (0,1), we define

Q*(S7a) :E[|1+V|2+V2|3+...]

as the expected discounted total loss by taking aetiarstatesand then followingt* there-
after. The optimal policyt* can be easily computed@ is known:77*(s) = arg miryea Q*(s,@).
The Q-learning algorithm is a classic RL method for learr@igrom observed transitions.
Starting from an arbitrary Q-function estimat@, the Q-learning algorithm repeatedly re-
fines the estimate when a new transitisra, |, s) is observed:

Q(sa) —Qlsa)+n (1+yminQe.) - Qisa))



wheren € (0,1) is a step-size parameter. Under certain assumptions, tinea¢sQ in Q-
learning converges tQ*.

Q-learning was originally proposed for solving finite-stafinite-action problems. In
our network control problem, however, the numbers of stateactions are too large for
the algorithm to be tractable, motivating the use of appnation architectures. Here, we
require as input a set éffeature functionsdy, @, - . ., @), and represent the Q-function by
a linear combination of then®(s,a) ~ Y¥ ; wi@(s,a). The update formula now becomes

Viiw —w+n (I +ijEiRQ(S’,a’) —Q(s,a)) Q(s a).

In the AC problem, we hand-crafted a few features, includirgaverage link utilization,
previous rate cap, and average class-1 traffic volume in a two-month period.

7 Experiments

We use actual traces of traffic (netflow records) on a link dmodd’'s backbone to run simu-
lations and evaluate some admission control policies. Wetlsp records by date for tuning
and testing: June 20-25 and Jul 1-3 for tuning and July 11ei6lfnd testing. In addition,
for reinforcement learning policy we used minute-of-daffic statistics collected over 45
days prior to June 20. We classify sources into class-1 @setabased on the source ad-
dress and source port pair (srcaddr, srcport). Since thasestare obtained on the current
network which does not have the proposed admission congohanism implemented, we
must treat class-1 arrivals differently from class-2 ailsv class-1 arrivals are treated with-
out any modification — as they are seen on the link. Howevesriasof class-2 flows from
the same (srcaddr, srcport) pair that are contiguous inisipelled together to form a single
class-2 request that first arrives at AC at the beginning e&#ries. For example, from the
same (srcaddr, srcport) pair, records such as (t=0, q=1601)500), (2,1500), (3,1500) are
treated as a single class-2 arrivat at 0 with 6000 bytes to transmit. Since class-1 traffic
enters the link directly, all class-1 sources are treated siagle collective class-1 source.
Thus the arrivals input to the simulator is a file containiimg$ such as below, where the
first column is the time stamp (1-second granularity), sdamiumn is the ID of the sender,
and third column is the number of bytes.

1243839494 1 17153
1243839494 D 185430
1243839494 20 1365260
12438394951 25533
1243839495 A1 68176

We tuned AIMD parameters on July 1 data. The traffic patterd@dy 1 is shown in Figure
1: with T =5, a= 800, d = 0.7, AIMD achieves a capacity reduction of about 18%he
AC negotiated class-2 traffic and rate-caps can be seenimdsi@-4.

3 Note that AC-negotiated traffic can see delays longer thaset®nds and therefore capacity reduction
can be bigger than in Figure 2.
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Fig. 3 AIMD-controlled traffic for a particular link at Yahoo! babkne on July 1, 2009.
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Fig. 4 AIMD Rate Caps

7.1 Effect of feedback delay

We can expect that a policy that sets rate based on link atiitiza feedback to perform
worse as the feedback delay increases. This is seen in FBglmehis figure, each point is
obtained by loss-tuning parameters for that T for the firgtidalevelopment test and using
the parameters on the second day of the data.

425000
420000
415000
410000
405000
400000
395000
390000
385000
380000
375000 | | | | | | | |

1 2 3 4 5 6 7 8 9 10

Loss

Feedback delay (seconds)

Fig. 5 Effect of feedback delay on the total loss in the July 1, 2088i¢.
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loss rate cap peak utl  unsent(%)
AIMD | 567194 7468 1107702 0.0005
RL 576761 5824 843742 0.0010

Table 1 Results of AIMD and RL policies on blind test data.

7.2 Comparison between AIMD and RL

We tuned RL parameters based on June 20-25 and July 1-3.tx&#ichose 900000 as the
target capacity and 700000 as the target average linkattiiz* On the development data,
we optimized RL and AIMD for different feedback delay valuasd measured the average
loss of the resulting policies on 12 days of traffic. As showrFigure 6, reinforcement
learned policies have smaller loss than AIMD when feedbatydis small, but larger loss
when feedback delay is large. The reduction in loss achibyeRIL when feedback delay is
no more than 5 is largely gained on days with low volume traffieir losses are about the
same when the traffic is higher volume.

500000 T T T T T

RL
AIMD
40000 [ e

300000

200000

Average Loss

100000

0 a a a a
tau=1 tau=3 tau=5 tau=7 tau=10

Fig. 6 Average loss of AIMD and RL controller with different feedikadelay.

Based on the results in the developmental data, we pickebesiepolicies of RL and
AIMD for T =5. We then ran each policy exactly once on the test data adis {1-13
and July 14-16). Table 1 reports the average loss, averégeap, and peak utilization.
Both policies gave similar loss, which are consistent wlith developmental data’s results
(as the test days’ traffics are heavy). The AIMD policy appdanore aggressive, managing
to send out more class-2 traffic at the cost of higher netwedkmsage. On the other hand,
the RL policy is more conservative; its average rate camisifscantly lower while avoiding
exceeding the target capacity. Figure 7 shows the negdttedéfic on the test set on July
11-13 controlled by AIMD and RL, respectively.

8 Conclusions

We propose a voluntary mechanism for admission controlgaleging web traffic. A vol-
untary mechanism is important because it is extremely édu avoid any unnecessary

4 This pair of parameters is sufficient for AC to transmit aliral$ class-2 traffic without exceeding the
target capacity.
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Fig. 7 Traffic on July 11-13 controlled by AIMD (top) and RL (bottom)

delay for some traffic, such as web page provision. In contaesizeable fraction of traffic
is low-priority traffic like backups, archiving and distated caching, which can be delayed
minutes or even hours. We derive a formula for retrospelgtigaluating the minimum ca-
pacity needed to transport a given history of web traffic Witbwn priorities. This formula
simplifies the calculations. We find that for Yahoo!, divigitraffic into two types — im-
mediate delivery and substantially delayable — is sufficfenminimizing capacity. That
is, the use of three categories, adding a middle “delayaBleos time” category does not
reduce the minimum capacity meaningfully. Substantialetidns in the minimum capacity
needed are possible even with relatively modest quantfidelayable traffic. In principle,
current traffic flow can be used to forecast coming traffic dngtbe a signal to regulate
delayable traffic. We show that using a fixed rate cap, idehtiz each traffic source, mini-
mizes the variance of total traffic subject to a given mean.fldvis is an exceedingly simple
policy to implement because it can be implemented via a lmagtdystem, and dynamically
adjusted based on traffic flow. We tested two important mettodchdjusting the rate cap:
AIMD and RL. Overall, AIMD was more aggressive and produceghér gains, while RL
exceeded the cap less frequently. We find, however, thanittéraffic is so bursty that, in
the typical reaction time available for many systems, tieligtle information in the current
flow about the next time interval. In some applications, adfiteme of day” policy, that sets
flow as a function only of the time of day, may be the best al&l@olicy.

Acknowledgements We thank Raymie Stata for introducing us to this problem. Wank Adam Bechtel
and Igor Gashinsky for constantly educating us about malationstraints in operating a large network.
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