
Noname manuscript No.
(will be inserted by the editor)

Cloud Control
Voluntary Admission Control for Intranet Traffic Managemen t

John Langford · Lihong Li · Preston McAfee ·
Kishore Papineni

Received: date / Accepted: date

Abstract The Internet backbone of many corporations carries two kinds of traffic: urgent
and delayable. Shifting some traffic from peak periods to valleys reduces capacity require-
ments. We consider the case of managing the delayable trafficby an admission control (AC)
system. AC gets link utilization feedback everyτ seconds. Delayable opt-in sources ob-
tain permission from AC to transmit for up toτ seconds at a rate not exceeding a limit
imposed by AC, renewing permission as needed. Urgent trafficbypasses AC. AC must al-
locate bandwidth to competing delayable traffic sources. Weprove that among all throttling
transformations of flows that achieve a desired mean aggregate flow, rate limits on flows
minimize the variance of their sum. Furthermore, a single rate limit common to all flows
achieves the optimum. Thus, for a single link, AC must decideon a single rate limit for
all delayable sources in eachτ-second cycle. We evaluate different policies that set the rate
limit dynamically in an empirical setting using netflow records on a link on the backbone of
Yahoo!. Using historical data, we also derive the best possible reduction in capacity of this
link using a closed-form solution to an assignment problem.We show that AC can achieve
capacity reduction close to the best possible reduction.

Keywords admission control· rate throttling

J. Langford
Yahoo! Research, New York, NY
Tel.: 1-212-571-8151
E-mail: jl@yahoo-inc.com

L. Li
Yahoo! Research, Santa Clara, CA
Tel.: 1-408-349-4299
E-mail: lihong@yahoo-inc.com

P. McAfee
Yahoo! Research, Burbank, CA
Tel.: 1-818-524-3290
E-mail: mcafee@yahoo-inc.com

K. Papineni
Yahoo! Research, New York, NY
Tel.:1-212-571-8147
E-mail: kpapi@yahoo-inc.com



2

1 Introduction

Many large corporations have a wide-area network that carries two kinds of traffic: urgent
traffic and traffic that can be delayed by a few minutes to a few hours. There is a big potential
for automatic traffic shaping on these corporate networks. We assume that some producers of
delayable traffic can be incented to opt into a scheme of rate-throttling by an external agent.
We assume that we can trap calls to TCP/UDP at the operating system level on the source
and that we can rewrite the called methods to communicate with an admission control (AC)
server. While we assume that application software that generates delayable traffic does not
itself change, we do assume that it can be relinked with a new library. In contrast, sources
of urgent traffic or receivers of any type of traffic need not even be aware of the admission
control mechanism.

We focus on a single link. A variety of sources of traffic use this link. Our mechanism
involves an AC that receives periodic feedback about trafficflow from the link. Sources can
ignore AC (such sources are called class-1); those that choose or are compelled to use AC
(such sources are called class-2) ping AC periodically for permission to inject traffic into the
link. Our scenario is that of an intranet cloud where some (but not all) senders participate
in admission control and there is considerable amount of delay-tolerant traffic originating
from them. The problem we address is the design of AC’s instructions, as well as the needed
capacity on the link.

1.1 Prior work

There is extensive literature on the topic of bandwidth management. In this short overview
of the literature, we discuss papers that attack a similar problem as ours with a range of ap-
proches. Many papers propose protocol alterations and demonstrate their viability. For ex-
ample, TCP-LP Kuzmanovic and Knightly (2003) , TCP Nice Venkataramani et al (2002),
and ImTCP Tsugawa et al (2006) are protocol alterations for background transfer support.
Our approach stemmed from the view that adaption of new protocols is difficult in our envi-
ronment and that it would be desirable to stop the traffic fromentering the network from the
side of participating senders. Our approach is implementable with simple user-space sender-
side trapping of appropriate library calls, and hence is substantially less invasive of existing
systems and easier to implement. We also run simulations fedby real data rather than sim-
ulated network flows, both validating the need for background transport control generally,
as well as providing some reasonable design parameters. In earlier published literature, fair-
ness is assumed to be a desired criterion while we show that fairnessis a desired criterion,
as it reduces variance allowing improved network utilization.

In Key et al (2004) the authors present an application-levelreceiver-side control mecha-
nism, while the approach we consider here is an application-level sender-side control mecha-
nism. Our experiments with real data suggest that very tightcontrol delays on the order of 10
seconds or less are required in order to effectively deal with real-world demand burstiness.
This timescale is substantially shorter than the control timescales demonstrated in existing
nsexperiments for this approach, as well as TCP-LP.

In Kokku et al (2007) the authors propose an improvement, HARP, on TCP by installing
gateways and relays, which can be used as an overlay to a TCP system. HARP uses real-
time delay feedback to re-route packets and optimize the network. Only non-urgent traffic is
delayed, as recognized by the gateways. Substantial speed gains are achieved in simulations.



3

One downside is the installation of additional network hardware and the need to reassemble
and reorder packets, which no longer arrive in order.

In Benameur et al (2001), a similar problem of admission control of two types of traffic,
streaming and elastic, is considered. Their goal is to give higher priority to streaming traffic
by rejecting elastic traffic when necessary. In particular,they use rough estimates of the
bandwidth of an incomingnewelastic flow, and then accept or discard the elastic flow based
on the bandwidth estimate. In contrast, our method explicitly communicates with class-2
sources about their bandwidth limits and thus avoids discarding packets.

Traffic control for elastic flows is also the focus of Yang and de Veciana (2002) . Here,
all flows have the same priority, and the objective is to improve user-perceivedperformance
by minimizing average bit transmission delay. Although ourwork focuses on a very different
goal of minimizing peak traffic volume, we do penalize trafficdelay by a carefully defined
loss function (cf., Section 4).

In Kumar et al (2000), the authors describe a successful and flexible implementation
of a TCP connection admission control of a low-speed WAN access link that connects a
high-speed campus network to internet. Their implementation uses Ethernet packet capture
for analyzing the traffic on the link and IP Masquerading for blocking new connections and
slowing down existing connections. In our approach, we dynamically publish rate limits to
senders that choose to participate voluntarily in the admission control scheme. Participating
senders delay traffic on their end.

A scheme in which a given transport flow is split at the packet level into a high-priority
and a low-priority subflows is described in Venkataraman et al (2008). In their Priority Lay-
ered Transport protocol, the high-priority subflow operates conservatively with legacy con-
gestion control whereas the low-priority subflow favors aggressiveness to fairness. Their
approach involves modifications on the receiver end as well,whereas ours does not.

1.2 Outline

The rest of the paper is organized as follows. In Section 2, wederive a closed-form solution
to optimal retrospective traffic shifting, given historical traces of different classes of traffic.
In Section 3, we consider the case of a single link with multiple sources of two classes of
traffic (urgent and delayable). We show that even when we knowin advance the probability
density functions of flow rates of the delayable sources, a single rate limit uniformly applied
to them minimizes variance. This considerably simplifies the solution: we just need to de-
termine the rate limit dynamically (everyτ seconds) based on future projections of urgent
traffic, network status, past requests, and the target capacity utilization. We describe the AC
formalism and an evaluation metric in Section 4. In Section 5, we present a simple baseline
rate limit algorithm, fashioned after the AIMD (additive increase multiplicative decrease)
scheme used in TCP. Section 6 describes a machine learning approach to admission control.
Section 7 presents experimental results. Finally, we conclude the paper in Section 8.

2 Optimal Retrospective Traffic Shifting

Before building a traffic shaping mechanism, we would like toknow upfront whether the
effort is justified. For traffic shaping to work, we first need to be able to identify different
classes of traffic. We collected traffic traces on links of theYahoo! backbone. A traffic flow
trace contains, among other things, the source IP address, source port, destination IP address,



4

destination port, router IP address, input interface ID, output interface ID, flow start and
end times in milliseconds since a reference time, transportprotocol (UDP or TCP), and
some flags. At Yahoo!, there is a way to identify data archivals and business-continuity-
related file copies from one data center to another. Such traffic always originates on specially
designated ports. Based on the source port numbers, we classified traffic into two classes:
class-1 (urgent) and class-2 (some delay tolerable). Our classification is not comprehensive
in the sense that we may have missed many sources of class-2 traffic. This classification of
traffic based on port numbers is done just for a retrospectivestudy of whether slowing delay-
tolerant traffic is worth the effort; we do not assume that an operational admission control
mechanism must classify traffic this way. Rather, we assume that some senders choose to
participate in admission control and request permission and rate threshold from an AC server
before sending delayable traffic.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000 1200 1400 1600

T
ra

ffi
c

vo
lu

m
e

Time in minutes

C2
C1

Fig. 1 Per-minute volume of two classes of traffic (“C1” for urgent and “C2” for delayable) on July 1, 2009
in a particular link at Yahoo! backbone.

Figure 1 shows aggregated traffic in these classes on a certain link on the firm’s back-
bone.1 Since capacity planning is link-specific anyway, we will focus on a single link in
the rest of the paper. It is noteworthy that class-1 traffic isnonuniform over time and offers
potential to reduce bandwidth capacity. Before giving a closed-form solution to the potential
reduction in the proposition below, we first introduce some notation. Let time be discrete,
from 1 to T. Let X(t,s) be the traffic that originates at timet and must be transported by
time s. We seek the minimum capacityγ∗ that handles all transport:

Proposition 1 The minimum required capacity for handling all transportation is

γ∗ = max
1≤t≤s≤T

1
s− t +1

s

∑
r=t

X(r,s)

Proof Note that∑s
r=t X(r,s) is the total traffic that must be transported during[t,s] which

consists ofs− t +1 periods. Therefore,∑s
r=t X(r,s)≤ γ∗(s− t +1) for all t,s. By definition,

γ∗ should be the smallest number that satisfies these inequalities. Therefore it equals the
maximum of these lower bounds. ⊓⊔

As an example of using the above proposition, consider the one-day traffic depicted in
Figure 1. Urgent (C1) traffic comes underX(t, t) since such traffic cannot be delayed. We can

1 There is much variability in volume and class-ratios acrossdays.



5

assume a maximum permissible delayd for C2 and calculate the minimum capacity required
to clear all traffic under these conditions. C2 traffic originating at timet must be cleared
during [t, t +d], hence becomes part ofX(t, t +d). Figure 2 shows the gain in capacity as a

function of maximum admissible delay in C2. The gain is defined as100(γ0−γ∗)
γ0

, whereγ0 is
the minimum capacity needed if no delay is allowed.

9
10
11
12
13
14
15
16
17

1 2 3 4 5 6 7 8 9 10

C
ap

ac
ity

G
ai

n
(p

er
ce

nt
ag

e)

permissible delay in seconds

Fig. 2 Retrospective capacity gain computed by applying Proposition 1 to the one-day traffic depicted in
Figure 1.

In this case, there is substantial benefit in delaying class-2 traffic. However, the benefit
depends on the relative magnitudes of class-1 and class-2 traffic and how they arrive in time.
It is possible that some links on the backbone see class-1 traffic almost exclusively and
therefore will not benefit from this type of admission control.

3 Rate Control of Many Sources

It is clear from the previous section that, even with a possible underestimate of class-2
traffic, we can benefit substantially from delaying class-2 traffic by a few seconds. Letc
be the target capacity of the link (perhaps set to, say, 90% ofthe true installed capacity).
The goal of admission control is to inject class-2 traffic into the link such that class-1 and
class-2 traffic together never exceedsc, but stays close to it as much as possible. In other
words, AC must allocate bandwidth to individual sources of class-2 traffic in such a way that
class-2 throughput is maximized while the link is not overloaded. How should we allocate
bandwidth to class-2 sources? It is clear that we would like the aggregate flows to be as
uniform as possible, other things being equal. We model the desire for steady traffic by
minimizing the variance, subject to a mean flow of traffic, which may equal the available
head room. For the moment, assume that we know the head roomh exactly and that there
aren controllable sources (of class-2 traffic). Sourcei generates flowXi , a random variable.
Suppose we knowf (x), the joint probability density function ofX = (X1,X2, · · · ,Xn). Given
this extensive knowledge, could we design a rate-throttling transformation specifically for
each source in order to reduce variance in the aggregate flow?In principle, the throttling
transformation on a particular source could depend on the flow rates at other sources. But
it is impractical to measure the flow rates for all sources to adjust flow rate of an individual
source. Thus we assume that throttling transformation of anindividual source depends only
on its own flow. Formally, a throttling transformation is a Borel-measurable functiont that



6

reduces the flow rate: 0≤ t(x)≤ x. What is the optimal form ofti(·)? Is it continuous? How
does it depend onf ? The optimization problem is formalized as

inf
ti(·)

∑
i

E(ti(Xi)−E(ti(Xi)))
2

subject to

0 ≤ ti(x) ≤ x

∑
i

Eti(Xi) = h

The answer turns out to be exceedingly simple:

Theorem 1 For all throttling transformations, ti on flows with a mean aggregate flow of
h = ∑i Eti(Xi), there exists a rate limit r, such that setting ti(X) = X for X≤ r and ti(X) = r
otherwise minimizes the variance of the sum of flows.

Proof Let fi(·) be the marginal probability density of traffic at sourcei. Becauseti(X) =
ti(Xi) and because of the constraint on the aggregate mean, the optimization problem is
equivalent to minimizing

1
2 ∑

i

∫ ∞

o
t2
i (x) fi(x)dx

subject to the constraints. We will ignore the nonnegativity constraint for simplicity. The
Lagrangian is

1
2 ∑

i

∫ ∞

o
t2
i (x) fi(x)dx +

∑
i

∫ ∞

0
µi(x)(ti(x)−x) fi(x)dx +

λ

(

h−∑
i

∫ ∞

0
ti(x) fi(x)dx

)

By Euler-Langrange, we have

ti(x)+ µi(x)−λ = 0

whereµi(x)≥ 0 with equality wheneverti(x) < x. Therefore eitherti(x) = x or λ = ti(x) < x.
In other words,ti(x) = min{x,λ}. ⊓⊔

Remarkably, the throttling transformation on each source is simply a rate cap that is common
to all sources. Note that we did not assume that the sources are independent. Were we to
know fi(x), we would solve the following forr :

h = nr−∑
i

∫ r

0

∫ x

0
fi(t)dt dx

In practice, we would not knowfi(·) a priori. Whereas one could attempt to construct es-
timates of fi(·) for each source online, this theorem suggests that we can simply adjust
the rate limit online based on feedback from the link. In the next section, we describe the
experimental setup based on actual netflow records of a link on Yahoo!’s backbone.



7

4 AC Formalism and Evaluation

We assume that feedback from the network is in the form of linkutilization, centrally col-
lected at AC directly from network devices periodically, once everyτ seconds. The link
feedback is in the form of total bytes transferred since lastpolled, and does not contain
class-level information. In our setup, sources request AC for permission to send bits. Given
that we trap calls below the application layer, this permission request does not include the
total number of bits to be transported. The request containsthe IP address and port of the
source as well as the destination. The AC grants permission in the form of a short-term
(up to τ seconds) nonexclusive lease of bandwidth with a rate limit.The source can send
flows not exceeding the rate limit for the duration of the lease and must return to AC for a
new lease to continue transport as necessary. A rate limit ofzero means pure delay. In this
setup, control overhead occurs roughly everyτ seconds – in the form of polling the devices
and communication between AC and sources. Traffic is throttled at the sources, not when in
transit. AC does not know the round-trip times from sources to destinations. The only infor-
mation available to AC is the link utilization status from routers and the past requests from
sources, and of course historical off-line data in the form of traffic traces that may be used to
model arrivals of both classes of traffic. In our scheme, in each round ofτ seconds, the AC
determines two numbers: a rate capr and the maximum number of sendersn. It allocates
r to the firstn senders seeking permission to send and 0 to any subsequent requests in that
cycle.

While variance of the combined traffic from all throttled sources motivated us to use
a common rate cap as a control mechanism, the efficacy of the admission control must be
measured in terms of throughput and link-overloading. Ideally, link utilization stays very
close to the target utilization set by network operators. Thus we would like to penalize
deviations from the target utilization. However, exceeding the target capacity can lead to
network instability and thus must be penalized more than link underutilization2. Moreover,
we penalize link underutilization only when there is class-2 traffic that is waiting to be
transported. For time running from 0 toT, and with a target capacityc, our loss function is
as below:

L :=
1
T

T

∑
t=0

l(c1(t),c2(t),c,b(t))

whereb(t) is the total buffered traffic at class-2 senders at timet, ci(t) is the class-i traffic
on the link att, andl(·) is the instantaneous loss function below:

l(a,b,c,d) :=

{

α(a+b−c) if a+b≥ c
min{c− (a+b),d} else

In the above,α is the penalty factor for exceeding the target capacity. In the experiments
below, we usedα = 10000.

5 AIMD Heuristic

Analogous to the “additive increase multiplicative decrease” heuristic in TCP implemen-
tations, we implemented a simple reactive control policy that adjusts the total bandwidth
allocated to all requesting class-2 sources up or down basedon link utilization feedback.

2 This is reasonable since opt-in controlled sources do not care too much about delays in the discretionary
traffic that they send via AC.



8

Algorithm 1 AIMD Input: average target utilizationµ, additive incrementa, multiplicative
decrementd, current utilizationu, current rate capc, current number of permitsn, number
of entry requestsr Output: (rate cap, number of permits)
if (u > µ) return (cd,⌊nd⌋)
if (δu > 0) return (cn+a

r ,r)
return (cn

r ,r)

The idea is to increase the total bandwidth additively if theaverage link utilizationu is be-
low a targetµ and decrease it multiplicatively otherwise. The total allocated bandwidth is
divided equally across permitted senders. The policy has three parameters: target link uti-
lization µ, additive incrementa, decrement factord. The algorithm tracks the current rate
capc, the current number of permitsn, and entry requestsr received in the prior cycle and
calculates the new rate cap and number of permits as displayed in Algorithm 1. Note that
AIMD does not increase class-2 allocation unless utilization is below target and utilization
gradient is positive. Without the latter condition, rate caps would keep increasing even when
currently active class-2 sources do not use up the allocation.

6 Reinforcement Learning

In admission control for Internet traffic management, not only does an AC action (such as
additive increment and multiplicative decrement in AIMD inthe previous section) result in
an immediate cost but it also affects the future status of thewhole system. For example,
setting the rate cap too low may require a long period for the system to take a sequence of
additive increment actions to raise it back to an appropriate level; on the other hand, setting
the rate cap too high may be helpful for transmitting all pending class-2 traffic, but can
be risky for the next few cycles if class-1 traffic increases substantially. Therefore, optimal
control in this problem has asequentialnature that requires the controller to take actions
that balances immediate and future loss. This problem is naturally modeled as a sequential
decision making problem and reinforcement learning (RL) Sutton and Barto (1998) can be
applied to optimize the controller.

In sequential decision making, a controller repeatedly chooses an action based on infor-
mation it observes about the system (called a “state”). After taking the action, the controller
receives an immediate loss and observes the next state of thesystem. We call the tuple
(s,a, l ,s′) a transition, wheres∈ S is a state,a∈ A is an action,l ∈ℜ is the immediate loss,
s′ ∈ S is the next state, andSandA are the sets of states and actions, respectively. The goal
of RL is to learn from a set of transitions to find an optimal policy, π∗ : S→ A, to minimize
the total loss whenπ∗ is followed. With a discount factorγ ∈ (0,1), we define

Q∗(s,a) = E
[

l1 + γ l2 + γ2l3 + . . .
]

as the expected discounted total loss by taking actiona in statesand then followingπ∗ there-
after. The optimal policyπ∗ can be easily computed ifQ∗ is known:π∗(s) = argmina∈A Q∗(s,a).
The Q-learning algorithm is a classic RL method for learningQ∗ from observed transitions.
Starting from an arbitrary Q-function estimate,Q, the Q-learning algorithm repeatedly re-
fines the estimate when a new transition(s,a, l ,s′) is observed:

Q(s,a)←Q(s,a)+η
(

l + γ min
a′∈A

Q(s′,a′)−Q(s,a)

)



9

whereη ∈ (0,1) is a step-size parameter. Under certain assumptions, the estimateQ in Q-
learning converges toQ∗.

Q-learning was originally proposed for solving finite-state, finite-action problems. In
our network control problem, however, the numbers of statesor actions are too large for
the algorithm to be tractable, motivating the use of approximation architectures. Here, we
require as input a set ofk feature functions (φ1,φ2, . . . ,φk), and represent the Q-function by
a linear combination of them:Q(s,a)≈ ∑k

i=1 wiφi(s,a). The update formula now becomes

∀i : wi ← wi +η
(

l + γ min
a′∈A

Q(s′,a′)−Q(s,a)

)

φi(s,a).

In the AC problem, we hand-crafted a few features, includingthe average link utilizationu,
previous rate capr , and average class-1 traffic volume in a two-month period.

7 Experiments

We use actual traces of traffic (netflow records) on a link on Yahoo!’s backbone to run simu-
lations and evaluate some admission control policies. We split the records by date for tuning
and testing: June 20-25 and Jul 1-3 for tuning and July 11-16 for blind testing. In addition,
for reinforcement learning policy we used minute-of-day traffic statistics collected over 45
days prior to June 20. We classify sources into class-1 or class-2 based on the source ad-
dress and source port pair (srcaddr, srcport). Since these traces are obtained on the current
network which does not have the proposed admission control mechanism implemented, we
must treat class-1 arrivals differently from class-2 arrivals. class-1 arrivals are treated with-
out any modification – as they are seen on the link. However, a series of class-2 flows from
the same (srcaddr, srcport) pair that are contiguous in timeis pulled together to form a single
class-2 request that first arrives at AC at the beginning of the series. For example, from the
same (srcaddr, srcport) pair, records such as (t=0, q=1500), (1, 1500), (2,1500), (3,1500) are
treated as a single class-2 arrival att = 0 with 6000 bytes to transmit. Since class-1 traffic
enters the link directly, all class-1 sources are treated asa single collective class-1 source.
Thus the arrivals input to the simulator is a file containing lines such as below, where the
first column is the time stamp (1-second granularity), second column is the ID of the sender,
and third column is the number of bytes.

1243839494 1 17153
1243839494 2.0 185430
· · · · · · · · ·
1243839494 2.10 1365260
1243839495 1 25533
1243839495 2.11 68176

We tuned AIMD parameters on July 1 data. The traffic pattern for July 1 is shown in Figure
1: with τ = 5, a = 800, d = 0.7, AIMD achieves a capacity reduction of about 19%.3 The
AC negotiated class-2 traffic and rate-caps can be seen in Figures 3-4.

3 Note that AC-negotiated traffic can see delays longer than 10seconds and therefore capacity reduction
can be bigger than in Figure 2.



10

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 200 400 600 800 1000 1200 1400 1600

tr
af

fic
vo

lu
m

e

Time in minutes

c1
c2

Fig. 3 AIMD-controlled traffic for a particular link at Yahoo! backbone on July 1, 2009.

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

R
at

e
ca

p
x1

00
0

Rate capτ(×1000) by AIMD.

ratecaps

Fig. 4 AIMD Rate Caps

7.1 Effect of feedback delay

We can expect that a policy that sets rate based on link utilization feedback to perform
worse as the feedback delay increases. This is seen in Figure5. In this figure, each point is
obtained by loss-tuning parameters for that T for the first day in development test and using
the parameters on the second day of the data.

375000
380000
385000
390000
395000
400000
405000
410000
415000
420000
425000

1 2 3 4 5 6 7 8 9 10

L
os

s

Feedback delay (seconds)

Fig. 5 Effect of feedback delay on the total loss in the July 1, 2009 traffic.



11

loss rate cap peak util unsent(%)
AIMD 567194 7468 1107702 0.0005
RL 576761 5824 843742 0.0010

Table 1 Results of AIMD and RL policies on blind test data.

7.2 Comparison between AIMD and RL

We tuned RL parameters based on June 20-25 and July 1-3 traffic. We chose 900000 as the
target capacity and 700000 as the target average link utilization.4 On the development data,
we optimized RL and AIMD for different feedback delay values, and measured the average
loss of the resulting policies on 12 days of traffic. As shown in Figure 6, reinforcement
learned policies have smaller loss than AIMD when feedback delay is small, but larger loss
when feedback delay is large. The reduction in loss achievedby RL when feedback delay is
no more than 5 is largely gained on days with low volume traffic; their losses are about the
same when the traffic is higher volume.

 0

 100000

 200000

 300000

 400000

 500000

tau=10tau=7tau=5tau=3tau=1

A
ve

ra
ge

 L
os

s

RL
AIMD

Fig. 6 Average loss of AIMD and RL controller with different feedback delay.

Based on the results in the developmental data, we picked thebest policies of RL and
AIMD for τ = 5. We then ran each policy exactly once on the test data sets (July 11–13
and July 14–16). Table 1 reports the average loss, average rate cap, and peak utilization.
Both policies gave similar loss, which are consistent with the developmental data’s results
(as the test days’ traffics are heavy). The AIMD policy appeared more aggressive, managing
to send out more class-2 traffic at the cost of higher network peak usage. On the other hand,
the RL policy is more conservative; its average rate cap is significantly lower while avoiding
exceeding the target capacity. Figure 7 shows the negotiated traffic on the test set on July
11–13 controlled by AIMD and RL, respectively.

8 Conclusions

We propose a voluntary mechanism for admission control in regulating web traffic. A vol-
untary mechanism is important because it is extremely valuable to avoid any unnecessary

4 This pair of parameters is sufficient for AC to transmit almost all class-2 traffic without exceeding the
target capacity.



12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000 1200 1400 1600

tr
af

fic
vo

lu
m

e

Time in minutes

c1
c2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000 1200 1400 1600

tr
af

fic
vo

lu
m

e

Time in minutes

c1
c2

Fig. 7 Traffic on July 11–13 controlled by AIMD (top) and RL (bottom).

delay for some traffic, such as web page provision. In contrast, a sizeable fraction of traffic
is low-priority traffic like backups, archiving and distributed caching, which can be delayed
minutes or even hours. We derive a formula for retrospectively evaluating the minimum ca-
pacity needed to transport a given history of web traffic withknown priorities. This formula
simplifies the calculations. We find that for Yahoo!, dividing traffic into two types — im-
mediate delivery and substantially delayable — is sufficient for minimizing capacity. That
is, the use of three categories, adding a middle “delayable ashort time” category does not
reduce the minimum capacity meaningfully. Substantial reductions in the minimum capacity
needed are possible even with relatively modest quantitiesof delayable traffic. In principle,
current traffic flow can be used to forecast coming traffic and thus be a signal to regulate
delayable traffic. We show that using a fixed rate cap, identical for each traffic source, mini-
mizes the variance of total traffic subject to a given mean flow. This is an exceedingly simple
policy to implement because it can be implemented via a broadcast system, and dynamically
adjusted based on traffic flow. We tested two important methods of adjusting the rate cap:
AIMD and RL. Overall, AIMD was more aggressive and produced higher gains, while RL
exceeded the cap less frequently. We find, however, that internet traffic is so bursty that, in
the typical reaction time available for many systems, thereis little information in the current
flow about the next time interval. In some applications, a fixed “time of day” policy, that sets
flow as a function only of the time of day, may be the best available policy.

Acknowledgements We thank Raymie Stata for introducing us to this problem. We thank Adam Bechtel
and Igor Gashinsky for constantly educating us about practical constraints in operating a large network.



13

References

Benameur N, Fredj SB, Delcoigne F, Oueslati-Boulahia S, Roberts JW (2001) Integrated admission control
for streaming and elastic traffic. Quality of Future Internet Services 2156/2001:69–81

Key P, Massoulie L, Wang B (2004) Emulating lower priority transport at the application layer: a background
transfer service. In: Sigmetrics, pp 118–129

Kokku R, A Bohra A, Ganguly S, Venkataramani A (2007) A multipath background network architecture. In:
Proceedings of IEEE INFOCOM

Kumar A, Hedge M, Anand SVR, Bindu BN, Thirumurthy D, KheraniAA (2000) Nonintrusive tcp con-
nection admission control for bandwidth management of an internet access link. IEEE Communications
Magazine pp 160–167

Kuzmanovic A, Knightly EW (2003) TCP-LP: A distributed algorithm for low priority data transfer. In:
Proceedings of IEEE INFOCOM

Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. MIT Press
Tsugawa T, Hasegawa G, Murata M (2006) Background tcp data transfer with inline network measurements.

IEICE Transactions on Communications E89-B No.8:2152–2160
Venkataraman V, Francis P, Kodialam MS, Lakshman TV (2008) Apriority-layered approach to transport for

high bandwidth-delay product networks. In: ACM CoNEXT, Madrid, Spain
Venkataramani A, Kokku R, Dahlin M (2002) TCP Nice: A mechanism for background transfers. In: Pro-

ceedings of the 5th Symposium on Operating Systems Design and Implementation, Boston, MA
Yang S, de Veciana G (2002) Size-based adaptive bandwidth allocation: Optimizing the average QoS for

elastic flows. In: Proceedings of the Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), pp 657–666


