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Technical Appendix
(Expanded proofs, not intended for publication)
The following lemma is used repeatedly in the paper. This lemma was first proven in the
generality shown here by Guesnerie and Laffont (1984); however, special cases were used by several
authors, notably Myerson (1981) prior to this. Subscripts denote partial derivatives.

Lemma Al: Suppose v: [a,b] — ¥ is twice continuously differentiable. Then

(Vr)(Vx) w(r,x) < v(x,x) implies (A1)
(Vx) v,(x,x)=0 and (A2)
(Vx) v, (x,x) = 0. Moreover, (A2) and (A3)
(Vr)(‘v’x) v, (r,x) 20 imply (Al). (A4)
Section 11
There are i =1, 2, . . ., n firms that desire entry. The cost of research for each of these firms is ¢; and

they must decide after entry how much effort, z; , to conduct so the total cost of firm i’s research is c;z;

along with a fixed cost of y. Given effort z; the CDF of firm i’s best innovation is /' (x) with a density

of z,F7 -1 (x) f(x). Ifthere are J firms that participate and each firm starts with an initially worthless

innovation the expected profit, excluding the fixed costs of y, for each participant is:
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THEOREM 1: Given a set of firms, there is a unique equilibrium in the subgame, which involves
positive z; for the lowest cost firms.

Proof: Order the set of firms from lowest cost to highest cost, for the purpose of this proof only
subscripts will refer to the ordered costs within the set of firms. An equilibrium is a subset of these firms

M such thatz; = 0 fori ¢ M and z; > 0 for i € M. Therefore,

or;

Z

P P

= —C; or C;
i
zz.
z;=0 J

jeM jeM
P2z
jeM
J#i

(5:)

Let |M | refer to the number of elements in M. Summing the first order condition over i € M, we have:
P(M-1) 3z
S - ol Ay s, AMEY
ieM l 2 Z Zj jeM ’ z ¢
Z z j JjeM ieM

JjeM

i¢eM = 02

ieM = Cl'=

The requirement that z; > 0 yields:

P z.
jé\:/lj Pzzj ch ch

. C o J#i jeM _ jeM . oo P _ _JeM
Forie M: ¢; 5 < 5 (|M|—l) Forig M: ¢; = ZZJ- (|M| - 1)
¥ Tz
jeM jeM

Therefore, any equilibrium involves only the lowest cost firms, say m of them, and is characterized by:

m
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This is unique because:

Thus, by induction:

K+1

2

S Cr4l SCkp

Q.E.D.

As part of Theorem 1, we obtain the expressions (3) and (4) when M is the set of firms that choose positive

z:
P(M|-1 P(|m]-1)
From the term Zz ;= rearrange to get z; = —— —— — ZZ ; now substitute to get:
i C; C; h
P 5
2
P(M|-1) [ J P(M-1)| a(M]-1)
o 2a P 5‘4 ! 2.6 2.6
ieM jeM jeM
From 7; = Pz — ¢;z; rearrange T; = Z; ZI:) —G | = P(|§| _1) 1- CZ(|§| _1) ZI; - ¢
1 171
z; z; C; C; z.
jg]%/[] _jeMj jeMj jeMj jeMj
B 2
2.¢
P(|M|-1 A M| —1 — (Ml =1
and substitute to get (4): 7; = (|Z| ) - Cl(|z| ) (|j;[]|w 1) —-¢|=P 1—_C’(|z| )
C; C: — C:
jeMJ jeMJ jeM ’

LEMMA 1: Suppose M represents an entry equilibrium, and k € M, i ¢ M. Letm = |M | . Then,

Proof:

mz—m

0'22—
m —m+1

i Ck

Suppose ¢; < ¢, = max{c;}, andi ¢ M.

jeM



| (M- )., 7
Since k € M, Pl—z—cj >y, or %3

jeM jeM
G+ Dc
If ¢, 2 TT/[, then entry of i would cause z; = 0, yielding profit for firm 7 of:
2 2
| M| -1 M|-1
;=P 1- (M| 1) > P 1- (| ) >y
ZCj—ck +¢; Zc
JEM jeM

G+ Dc

jeM

but this implies i € M which contradicts our earlier supposition. Therefore, ¢; < |M|

2

Sincei ¢ M: P|1- C|M| < ﬂ> _ 7 . _ .
<y, or > 1 p - Lettingm |M|,we have:
G+ )c

C+Zc

JEM jeM
am ¢ m—1 c; c;
i ), or em>c, (m=1) 1+ <= ch(m—l){l+ : }
¢ + Zc ch ch mcy
jeM jeM JjeM

where the last inequality holds because ¢; = max{c;} .
jeM

Multiplying through by mc; to get: mzcl-ck 2 ¢, (m— 1)[mck + cl-] or [m2 —(m—=1)]c; 2 m(m—1)cy

which is the result stated. Q.E.D.

THEOREM 2: There is a unique number firms, m, which is efficient for entry in the tournament

and entry of the m lowest-cost firms is an equilibrium.



k-1 . k-1
Proof: Note that ¥ > P I—M iff 1- % < G k=1
2. €
Jj<k j<k
implies: (1 —J%j Zc- < qgk-1)=> (1 —J%j ch <c (k-1) +(1 - 1/%]0k+1 < ke 4q
i<k j<k+1
2
. . kck+1 e, . ..
implies that: y > P|1— T . Thus, if it is unprofitable for firm & to enter, it is unprofitable for
C:
J
J<k+1
firm k+1 to enter, showing the equilibrium m is uniquely determined. Q.E.D.
méy, . th
Define: A, =—"— where ¢,, is the cost of the m lowest cost firm.

m

Z?:l €

THEOREM 3: If A, is nondecreasing, then the total procurement cost of obtaining a fixed level Z

is minimized at m = 2.

m
Zy ¢

m P 1 —
Proof: Z Plm=1) — p=_J
j:l Z c. m-— 1
2
¢, (m—1
The optimal entry fee with m participants is: £ = P| 1— _m% ) —y
C:
J

JjeM

which are the profits of the m™ highest firm. The total cost of procurement with m participants is:

2 2 2
Zch
(l’l’l 1) J=1 Cm(m_l)
1C,, = P—-mE = P{1- ml— +my = l-ml-———=| (+my
ZC m—1 ch
JeM jeM
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m m—1)c,,
Note that 1 <A, < T since % <1 (profits are nonnegative) and ¢j S ¢y , Vj<m.
m_

c.
j=1"J

m+1

1
7C,,,., - TC, = y+Zch{—l+2Am+1— ~ m+1} ZZ {1+2Am n- Az}
=t m+1 m
m+1 m+1 m—1 5
= ]/+ZJZ:1CJ{—1+2AWH_1 - 1 m+1} ZZC{ 1+2Am . —A }

m

m+1 _
= ;/+Zch<{2Am —mAmH 24, + 2 1A@}+%{—1+2Am n- 1A2,n}>
j=1

+Zcm+1{—1+2Am - 1A2m}

m+1

m m
mil 2 m—1 2 A 1 m— 1 2
= y+ZD ¢ 2(A, —A) —— Am+1+—Am+L+{—1+2Am Am}
=t m+1 m m+1 m
_ +Zmz+:lc 2(A, 1 —A )—(A —A )(LA +m_—lA )_M
4 p j m+1 m m+1 m ma1 m+1 m m m(m+1)

(Amil] a7 IAZ}
m+1 me m
A

-1 A (2m—-1 -1
iAm-H _m—Am) + m+1 {_1 + m( m ) _ m Azm}>
m m+1 m m

+1

m+1
=y+ chj<(Am+l - Am)(2 -

j=1

m+1

:7/+Zch<(Am+1—A )(l—mAm+l+1—m—lA ) %(1—%){1—’"—_1%»

J=1 m m+1 m
! ! ) )
positive by positive since terms like: . -
) ¢ ¢
hypothesis [ _m- 1 A 20 negative  positive
m



Therefore, this expression is clearly positive as longas A,,,; — A, = 0 ,implying 7C,, ., = TC,, and
the optimum occurs at m = 0. Q.E.D.
¢ 1 m-1lc,_

<+ L. Then A, <A
Cm+l m m Cm

LEMMA 2: Suppose m < m and

m+1

(m-1)c c

Proof: (By induction) Firstnote ¢, >c¢, = A, >A,. Rewrite A, 2 A  , as: 1- ml >

m
me
m
Z ¢;
=

1 m-1lc c m—1c c
By assumption, — + ml > " Therefore 1-— ml> " implies:
m m c, C,. m c, “
2.¢
j=1
m+1 m—1)c 1 m—1)c c c
=1—( Yo —+( o > —*—+—"— whichimplies A, ,, =A, . Q.E.D.
m mc,, m mc,, < Coit
2.¢
j=1
Section III:
2
¢ (m — 1)

In an m contestant auction, firm i’s profits are: 7, = P| 1 -

2,
C.
=1

Consider the m+1st (uniform) price auction, and suppose B is an equilibrium bidding function. In
order for the equilibrium to be efficient, B must be decreasing in higher costs. A firm with cost ¢; which

bids B(¢) earns profits:

dcdc,...dc, | +h, (c,)dc,

m—1

P 31 O PO s I Y R CY R TCHY
(G, VL e Y e, | He) Hie,) T He,)

¢

[ Bley Yy s(e, e,

(NOTE: In this problem, we are looking for the m lowest cost firms, therefore we use standard order
statistic notation where 4,,.,.;(x) refers to the mth lowest cost firm out of (n-1) firms.)

Taking the partial of this profit with respect to ¢ gives us:
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2

ot (] _etm=D | Ae)hey) e, o .
—_p jjl ci+Zj';lc_, HO RGO H® dede,...dc,  ‘h (&)+B(&)h,. (¢)

2
T .

is increasing in ¢; this implies that ~> 0. Thus, using Theorem Al by
¢, + Zm_ C. ééébi

Since

Guesnerie and Laffont, in equilibrium:

© Bl Pf o f| 1= S| o) Men) i)

- - dc,dc,...dc, ,
c+2m c. | H(c;)H(c;) H(c,)
o 0 i j:l Jj 1 1 1

If this equilibrium bidding function B(c) is decreasing in ¢, then the m+1st price auction is

efficient in selecting the lowest cost firms for entry in the tournament.

ch(c) ch(c)
Lemma 3: If H(c) is decreasing in ¢, then B(c) is decreasing in c. Alternately, if H(c) is

nondecreasing in ¢, then B(c) is nondecreasing.

Proof:
IB(¢;) _ I)I I c(m D | Ae) ey he,s) . de,...de h(c;)
dc, e+ e, | Hie) He) ™ H(c) T H )
—P(m—l)MT...T j__am=l) | i) hey) Mew) yoqe g
H(c,)s ci+z';:11¢j H(c,) H(c;) H(c)

_PT T21_ c,(m=1) || (m- DZ 26 | ko) hey)  he, ) de,dc,...dc,,

| e+ BRI ] H(c,) H(c,) " H(c,)

We can integrate the second term by parts using J‘ udv =uv — I vdu and letting:



u=|1- G o du=21--GmD G alm=h) g
c; + ijlcj c; + ZFIC_, {c + z} 1 /}
h(cl Yh(c,).. h(cm 1) de. S0 v = h(c))h(c, )“-”}:_(lcm—z) H(e, )
[H(C )] [H(Ci )]
Therefore, the second term can be rewritten:
2 y
_P(m h(c ) J. J. C; (m — 11) h(cl )h(CZ )“'ril_(lcm—Z)H(cm_l)dcldcz‘”dcm_z
H( ) o C; + Z [H(Ci )] 0

_f,__le_ c(m=1 || e (m=1) | h(c,)h(c,)...h(c, )
0 0 C-l-Z:j1 ; [ci+27;110j]2 [H(C,-)]m—l

Substituting this expression in for the second term we get:

H(c, ,)dcdc,...dc, |

o”g(C)_ P(m )I J - Cf(m—mg h(cl)h(cz)---f_(lcm_z)
PR 2Cl.+zj=1 ¢, [H(Ci)]

dc,dc,...dc, ,h(c,)

r 2
¢

_P(m h(C ) I ]. 1_ Cl(m;l_ll) h(c1)h(cz )"':l_(]cm72)I_I(CWF1 )dcldcz---dcm,z
H( ) 0 c, +zjzlcj [H(cl.)] .
_fr ]l 2 1_ Ci (m ;_11) . ci (m_ 1) . h(cl )h(CZ )"’ril_(lcm—Z ) H(cm_l )dcldC2 -.-dcm_l
00 ¢+ 216 ||e + Zjllcj] [H(c))]

_PT-.-T21_ e.m=1) || DX | heies). he,, )
Lo Xl ez ] ] @

But the first two terms cancel out, and we are left with:

dc,dc,...dc, ,




é’B(c,.) h(c) c,(m— 1)
o e

c,(m=1) h(¢,)h(c,)...h(c, ,)

X [Ci . Zf_llcjr [H(c, )]m—1

H(c,, ,)dc,dc,...dc,,

o o

B Y e
~P[..[21- AL o )Z]_IC; M) M) 4o e de,
¢, + Zj=1 ¢, [cl. + Z;:lcj] [H(c))]

Rearranging terms:

AB(c,) (m—-1) c.(m—1)
=P h(c)(m-1)|..[2[1-———~"2—
dc, [H(c,)]m< (e ) )'[ 1[ { ci+2711cj]

C.
: > th(e))h(c,)...h(c,_,)H(c, )dcdc,...dc,,,

X
m—1
[Ci + ZFI Cj]

[T H m-l
~[.[21- C(’"mll) | ]z“z’ h(eh(c,)...h(c, )de,dc,...dc.
C +Z} 1 J [ z/ lcl]

o . : IB(¢;)
Putting into summation notation: ———— =

ac

o o

pm=D Zh( )f le C"(’";_ll) _ ¢iH(¢) : ﬁh(cj)dcl...dc_
[H(C )] 0 ¢; +ijlcj Ci+z;:1lcj] j£k

m-1¢ ¢ m—
“3 21 c"(m;_ll) [H (el : rfh(cj)dcl...dc
it 2 | [cl-+2’;’;fcj] n

~.

Combining terms:

10



ﬁB@J:P(m—D W1?321_<ﬂm—D 1
oc. [HEe]" S 0 0| e+ [C 5N ]]
X ﬁh(c [c h(c,)H(c,)—c,h(c,)H(c, )]a’cl...a'cm_1

Rearranging and dropping the i subscripts we are left with:

IB(©) _ p SO ol | _cm=D
& [H()]’”%ZIH c+ e

H(c;) | {ch(c) ckh(ckﬂ
X H h(C ) — dcl...dcm_l
ex e i IO e

ch(c) S
Therefore, if = is decreasing in ¢, then since ¢; < ¢; this implies

H(c)

ch(c) ¢, h(c,) <0and
H(c) H(c)

JB(c)
oc

< 0 so a pure strategy equilibrium exists that is efficient with the lowest cost firms submitting the

ch(c)
H(c)

highest auction bids. On the other hand if is increasing, then any equilibrium is inefficient which

was the conclusion of Section III.

Section IV.

First we will show there is no differentiable pure-strategy bidding equilibrium for the uniform-
price auction when contestants differ in starting values and have no opportunity for further research
following entry. If we define “y” to be the cutoff starting value of the (M+1)st firm, the probability firm i
wins the prize, given entry is our equation (7). A firm holding starting innovation x; that bids as if it held
innovovation » would expect a profit equal to:

11



min{r,x; } F(xl- ) _ F(y) m—1 r
7Z'(I’,Xl-)=P A (I——F(y)j fm:n(y)dy__([ B(y)fm:n(y)dy

The first order conditions for a maximum require 7, (x,, x,) =0.

®)

F(x;)-F(r)\"™
71 (%) = P[%()”j Foon ()= BE) () ifr <
7Z'1(V,Xl-)=—B(V)fm:n(l") ifr>x;

In both cases, evaluating at r = x; gives us:  7,(x;,x;) =—B(x,) f,,.n(X,)
Setting 7, (X, , x,) =0 implies the only possible equilibrium bidding function is B(x) =0 Vx.
Which clearly cannot be an equilibrium bidding function.

Now consider the case where firms can conduct additional research following entry. In what
follows we will prove a series of lemmas to derive the equations and conditions which characterize the

profits of these firms as represented by [Graph 1] in the paper.

Let x; be firm i ’s initial innovation endowment, and x,,,,= max{xl-} .
i

For x; < X4y , firm i wins the tournament with probability:

27

1- F(xmax) J

©) J TIFOY 2P G )y - ZZ;J.

Ymax -
J

In contrast, the firm holding x,,,, wins the tournament with probability:

Z z
(10) F(xmax) / +tw=—|1- F(xmax) /
27

J

Lemma 4: If the value of the best entrant’s starting innovation is such that

7
F (X max) >e then none of the tournament contestants will conduct additional research

following entry.

12



Proof: The choice of z under full information and identical costs is solved as follows:

m
(For simplicity define Z = ZZ i)
j=1

Fori # max: 7m; = P%[l - F(xmax)z] —cz;

. P(Z -z Pz . B P
on; _ ( ~ Zl)[l_ F(xmaX)Z] Iz F(xmax)zlogF(xmax) e & or; _ Pl F(Xpax) .
é’Zi Z A z; o 7
L& (2-z) 7], (Z-z) z z; P 5
; (ﬁzj )2 =-2 Z3 [1 - F(xmax) ] -2 ZZ F(Xmax) log F(xmax) - EF(xmax) [10g F(xmax)]

(Z2-z)

< 72 Z3 1- F(xmax)z + ZF(xmaX)Z 1OgF(XmaX) <0

To see that the term in the square brackets is positive, note that it comes in the form:

o(Z)=1-F% + ZF?1ogF where ¢(0)=0 and ¢'(Z) = ZF*(logF)* > 0.

Fori=max: Ty = PF(Xpa)” + szf[l — F(X0)°

— CZmax

P(Z -
% = P|:1 _Zmi:|F(xmax)Z logF(xmax) +W[l - F(xmax)Z] —-C
OZmax zZ z
_ pZ T Ima i Y log F( - F z
-4 T max g xmax) +1- (xmax) -C
2 ZF (x, )2 108 F (X ) + 1= F(Xp0e )
Vi 7T max i max g max max
sgn ———— = sgn
(azmax)2 oz ZZ

2
Z2F () [108 F i) =2 ZF (X)) 108 F (i) + 1= F (i)
Z3

= sgn

2 _
= sgn Z°[l0g F(xipay)]” = 22108 F (tipgy) = 2 F ()~ - 1

13



To sign this last expression, let @(Z) = Zz[logF]2 —2ZlogF — Z[F_Z - 1] so that @(0) = 0 and
p'(Z) = ZZ[logF]2 —2logF + ZF_ZlogF therefore ¢'(0) = 0 and

0"(2) = 2logF[' ~2F “[10gF | =2log FT'{1-F~7} <0

2

7
Therefore, ¢ < 0 which implies Aaxz <0.
(ﬂzmax
o P
Em) = 1 F () + ZF (i) 108 F ()| =
OZmax 2,20 Z

_ orn; P or
and previously we showed ! = —[1 - F (xmaX)Z — ¢ therefore > > é,—nlax
Zi z;=0 z Zi z;=0 Zmax Zmax=0
or; orn
So, L <0 —»> —max <0 .
% z=0 azmax Zmax =0

é’ﬂ’i

oz

<0 IFF lim £1—F(xmx)z —¢<0

Thus, Z=0 IFF
70 Z

z;=0

Using L Hopital’s rule this is: lim — PF(xmaX)Z log[F(xmax)] -c<0
Z—0

IFF log[F(xmaX)]Z—% IFF [F(xmax)]Ze_%’

_c
Thus,Z=0 IFF F (X max) >e A which is the result we sought to prove.

Q.E.D.

Now we will derive the equations and conditions which characterize the profits of these firms as

represented by [Graph 1] in the paper.

Define u,, to be the solution to: 1—u+ mulogu in (0,1). This solution is unique.

To see this, let: y(u)=1—u+ mulogu. w(0)=1 and w(1)=0.

14



IN

< ~(m-1)/
1,//'(u):—1+u+m[1+logu]=m:1+mlogu>0 as u _e m

\%

_ 1
This is an interior solution because /'(1)=m—1> 0. Note that u, <— , because for m > 2,

m
1//(%)=1—l+ logi=m—_1—log(m)<0
m m m

Example:
m (m-1)u, m (m-1)u,

74
2 0.284668 10 0.242264 - m-1

0 e M

0 u
3 0.297999 20  0.208155 | 1
4 0.289949 100 0.152669 l
5 0.279681 1000 0.109550

_ _ c mc c
In fact, (m-1)u,, — 0as m — . Let ¢, = (m-1)u, . Then 1 — —"—+ —= log( = j:O.
m—1 m-1 1

. m Co .
For large m since ¢,, < ,then 1+c, log( j = 0. Therefore, if ¢, = ¢, >0 then
m m—

c . -
c, log( - 1) — —oo, which is a contradiction.
m —

Lemma A2: If —log F(x,,,) < %, Z=0

If —(m—1u,logF(x,,) < % < —log F(Xax)> Zmax = 0 and Z solves:

m=2 1= F%(Xpu) 1 5 ¢
- F~(x log F(x -—=0
m— 1 Z (m _ 1) ( max) g ( max) P
¢ _ —1 1-F%(x,,,) ¢
If —<—(m—1u,logF(x,.), Zmax =0 and Z solves -—=0
P m Z P

15



Proof: The first portion of this lemma was already shown in Lemma 4 above.

. Z-z)[1-F? Pz, F*
For i # max . é’ﬂz _ P( z)l - (Xmax)] _ 1z (Xmax) IOgF(xmax) —c
Oz V4 VA
Z V4
ﬁﬂ-max — P(Z_Zmax)[l -F (xmax)] + P(Z _Zmax)F (xmax) 10gF(xmaX) —c
OZax 7?2 A

First note that, If i, j # max , then z; =z; .

on; Pl1-F%(x,.)] Om, Pz |[1-F%(x0)
J _ max _ i i max z
For 7z, = P, —c= oz + ~ ~ + F* (Xpax) 108 F(Xax)
zj =0
. 1- FZ (xmax) V4
Thus, if z; >0, z; > 0 as T+ F* (xpax)10g F(xpax) > 0.
Ar. O z,—z)| 1= F?
But then, 0 = i Ny P( ;%) (ma) _ FZ (%0108 F(xX,1,y) |, which implies z; = z; .
z 0z Z Z
However, i <0=> O T max <0.
% z=0 O’DZmaX Zmax =0
Thus the only possibilities are:
1. Z=0,
2- Zj > Oa Zmax = O,
3. Zi, Zmax > O.
1-F* _1-F”’
Note that: 12 B (i) is a decreasing function of Z, and llmw = —log F (X %)
Z z—0 VA
c or; 1-F? (X1ax)
If —log F(Xxp.y) < —, then — = P—— - — ¢ < —Plog F (X)) —¢ <0, and Z =0
P Oz | _ Z
z;=0
If z,, ax > 0, summing the F.O.C.s yields:
m=1 1= F () ¢ _,
m Z P

16



In order for z,,, = 0, we must have:

m=2 1= F%(Xpm) 1 5 ¢ m—1 1-F*(x
- F7(x log F(x ——=0 and -
m—1 Z (m—-1) (Fmax) 108 F(Ximax) P m Z P

Consider the function:

m—-2 1-F%(x_..) 1 m—1 1-F%(x,..)
— F~(x log F(x - —
m—1 Z (m-1) (¥max ) 108 F(Xmax) m Z
1

= _W[I_Fz(xmax)+mFZ(xmax)logFZ(xmax)

- Z(m 1ym [W( ]
Thus:
m-2 1-F (xp) 1 g 2 m=1 1=F () . 12 2 _
m—1 7 - (m—l)F (xmax)logF(xmax) < m as: ' (xmax) < Uy,

logu,,

7 _
At F7 (Xpax) =

U, ,

1 VA
=1 butitis always true that —logF“ = logF
log 7z y 7 g g

(Note: For notational simplicity we will write F(x,,,.) = F')

_ y4
so, at FZ(xm) ,then Z = logi, and m-11=F

oo F - = —(m—1)F#logF = —(m— )i, logF

Therefore: If: % < —(m—1)u,, log F(xp.)

z z z
m—1 1= F%(x.y) S m—=2 1-=F"(Xpax) _ F (xmax)logF(xmaX), and z

then
m VA m—1 VA m—1 max

> 0.

(see figure below)

If —logF > % > —(m—1)u,logF, then we mustshowz_,, =0.

m-11-F* ¢
m Z '

Suppose z,, > 0, so

17



or, _1-F? | 1-F%
Then: <% = P ~pi +F% logF |- ¢
0z; z VA
1-F# P |1-F*
> P - +FZlogF |- ¢ because z,, > 0
Z m—1 Z
-1\ 1-F*
> P(m—j -c=0 because FZ > i, Q.E.D.
m Z
Graphically,
—logF
-1
_m logF
m
—(m—-1)1,, logF m—1 1-F*
m Z
(m— 2) 1-F* F”logF
m—1 VA m—1
logi,, z
logF’
log i
In the figure above, z,,,, = 0 to the left of the dotted line at 10 l;;” , and to the right z,,,, > 0.
0g

On the vertical axis, when % > —(m—1)u,, logF' we will be to the left of the dotted line on the

horizontal axis and z,,,, = 0.

How can you determine what x,,,, is correct for finding where z,,,, = 0?

c _ ) .
We know at that value, F = —(m—1)u,, logF. Therefore, the appropriate x,,, is the one that solves:

= p {e[—c/P(m—l)um]}

max

Thus, as an example if ¢ = 1, P = 10, m = 2, and F(x) is uniform [0,1], then if x,,,, > 0.70378 this implies

that z,,. = 0.
18
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_ c
LEMMA A3: If —(m—1)u,,log F(x,) > 7’ then m; is increasing in x,,..

then 7; is nonincreasing in x,,,,

If —(m — )it log F(x,y) < %,

then Z =0 and 7; = 0.

c
If —log F(xp.y) < 7’

Proof: If — > —log F(Xax ), then Z = 0 and 7; = 0 from Lemma A2

So suppose —(m—1)u, log F' < % <—logF',soz>0andz,, =0.
| j2
7 =PE(-F")—cz=—|1-F' -£Z7
z m—1 2
dr, _
T P | _gpri_ (leogFJr )dZ N S (FZ log F + jdz
P)ar| m-1 P dF

Thus, —=
dF  m-1

7 is determined by: v = (m—2)(1— F”)— ZF* log F — (m - 1)%2: 0

P (m-2)F7 logF — F7 logF — ZF” (log F)" — (m— 1)<

_ zZ
a=F )—FZ logF}

=—(m-— I)FZ logF—ZFZ(logF)2 —{(m— 2)

= —{( - 2)[(1 0 +F” logF} + ZFZ(IOgF)z}

—ZF”[(m—2)+ ZlogF]

% =—(m—-2)ZF*"' -~ Z°F* ' logF =
&

d F ZF*'[(m—2)+ Zlog F|

dF & _F?
=z {(m - 2){(1;) +F% log F} +ZF* (log F)Z}

20



1-F*
Note that the denominator is positive since {(—Z) +F” logF } >0
dr, Z
Thus, i< IFF ZF%' +(FZ logF+£)d—> 0
dF P/ dF

ZF*! [FZ log F + ;)[(m ~2)+ ZlogF]
IFF  ZF*' - >0

{(m - 2){(1_52) +F% log F} + ZF%(log F)z}

_ V4
IFF  (m— 2)[(1—;) +F” logF} +ZF”(log F)* > (FZ log F + %j[(m —2)+ZlogF]

IFF

(1-F%)

(m— 2){ +F” log F} + ZF” (log F)*

m=2 1-F* F”logF

m—1 Z m—1

> (FZ log F + j[(m—2)+ZlogF]

[(1-F7)

IFF -2
(m—2) 7

_ _ VA
+F? 10gF}+ZFZ(10gF)2>(m f)(l F L F 10gFj[(m—2)+ZlogF]

IFF  (m-2) LFZ)

_ _ Z
+leogF}+ZFZ(logF)2>(m f)[ IZF +leogFj[(m—1)+ZlogF—1]
m_

A
IFF ZFZ(logF)2>(m f){ IZF +leogFj[ZlogF—l]
m_

1-F”
Which is true. (left hand side > 0 > right hand side, since {(—Z) +F” log F} >0)

. ... dr, on,
(For m = 2, the proofis trivial: ——=——"-<0.)
dFf  JF

. — c . . ..
Thus, we have shown that if —(m — 1), log F'(x,,,) < 7’ then 7; is nonincreasing in x,.

-1 1-F”
On the other hand, if ‘< —(m—-Du,logF, z,,, >0 and n-- =<
P m z P
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Pz, A
ﬂ[:i(l—FZ)—cz[:Pz[ £ —-cz, = “

Z Pm-1 m—1

: Z- 1-F” ~ 1)z

0= % o pZ=ima| pZygop I7FT | plm Dz ‘:leogF+ " 3}

OZax Z VA Z m—1P
Thus, z, = ¢ z

Pim=D)} m ¢ | pz log F
m—1P

However, using the quotient rule for differentiating, since the denominator is squared we know:

dz,
92 o mF |l P 10gF |9 7D g7 10 <0
dF m—1P dF dF
IFF [L£+ F? logF}ﬁ —~ Z[Fz(logF)z 2z, g {ZlogF + 1}} <0
m—1P dF dF
IFE |- S 4 FZlogF - ZF% (log F)’ d—Z—ZF“{ZlogF+1}<O
m—1P dF
] 7 m cZ L .
Since 1-F*~ — 1P =0 then by the implicit function rule we have:
m_

Z-1 _ gz
£:— Zi <0 since 1’*—'ZlogF+L=FZlogF+1 al >0
oK F?logF + _me (m=1P

(m—-1)P

dz,
Therefore, 2z <0 [IFF:
dF

mc

_ [Li + F?logF — ZF*(log F)? }ZFZ‘I —ZF'[Z1ogF + 1]{FZ log F + =P
m —

m—1

mc

IFF [L% +F”logF - ZF”(log F)’ }ZFZ‘I +ZF*'[ZlogF + 1]{1?Z log F +
m —_—

m ¢ z z 2 z mc
IFF |———+F logF —ZF"(logF)” |+|ZlogF +1|| F" logF + ——— |>0
[m—lp & (loe )} [#1o2 ][ ¢ (m—l)P}

22
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IFF [ZlogF +2]

IFF [ZlogF +2]

IFF

IFF

m —

F? logF +

Z

FZlogF + ¢
(m—1)

> ZF*(log F)?
P} (logF)

} ZF” (log F)

[Zlog F + 2] ZF* log F + 1~ F*|> Z*F* (log F)*

[logFZ +2][FZ log F” +1—FZ]>FZ(logFZ)2

IFF [logFZ+2][l—FZ]+2leogFZ >0

Letu = F”, and @(u)=[logu+2][1 - u]+2ulogu

1—u

' (u)=
u

—[logu+2]+2ulogu+2=l—l+logu>0
u

(since mathematically x log F'=log F'*)

{since 1 —u+ ulogu is zero at u = 1 and is decreasing for u € (0,1) }

Therefore, when u € (0,1) then ¢@(u) <0 because ¢(1)=0 and @'(u)>0 .

Thus, (note we are reversing the inequalities now) a sufficient condition for

i

o dz,
>0is —->0,or
dF

o(u)<0 where u=F’. Moreover, @(u)<0 need only hold at the upper limit of u, defined by:

m-1 1-F*
m VA

IFF 1-F*

IFF

IFF u<u

m

Thus, a sufficient condition for
[log u, + 2][1 -u,

So, a sufficient condition for

[log u, + 2][1 -u,

C
—<—(m-Du_ logF
5 ( )u,, log

+mi, logF” <0

l—u+mu, logu<0

i

] +2u, logu, <0

d”i>0
F

2(1 - uﬂl)

m

<0

]_

{Note the LHS is increasing in « and is zero at u=1u,, }

>0 is:

but

1S:

OR
m

23
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When m =2, 1, = 0284668 therefore: 2(’"—_1) +log@, = 025643 <0
m

When m =3, u,, = 0148999 therefore: Z(m ) +logu, =-0.570482 <0

m

When m > 4 this is also true because u,, is defined as the solution to: 1—u+ mulogu=0. So,
checking u=e? we get: 1—e +me>(=2)=1—-e [l + 2m]< 0 whenever m > 4.

Q.E.D.

Theorem 4: The uniform-price auction is inefficient for selecting contestants when firms differ in
their initial starting positions.

Proof: Previously we showed that if firms are not allowed to conduct research following entry then the
only possible pure-strategy bidding equilibrium is for all firms to bid 0, which is not an equilibrium.

When firms are allowed to conduct research following entry, LEMMA 4 tells us that Z=0 IFF

—_C
F(xp) e /P . This implies that for all tournaments where ¢ > 0 and P < oo, then F(x,,,;) < 1. In

other words, the firms with the best possible endowments (i.e., innovations greater than this critical value
of x,..x) Will NEVER do additional research following entry. If the sponsor conducts a uniform-price
entry auction, the expected profits of one of these firms holding x which bids as if it holds » but never does

additional research is:

F(x)—F(y)jm_l i 0 3 J
Ry ) SO j ) a0y

Using Lemma Al and taking the derivative with respect to », evaluated at » = x leaves us with:

min{r,x}
u(r,x)=P j (
0

u, (r,x) |r:x =0 = B(x)=0
However, this means that the only possible pure-strategy equilibrium bid for firms with the largest
endowments of x is to always bid zero regardless of whether additional research is allowed by the sponsor
following entry. But this obviously cannot be an equilibrium bidding strategy -- so there is no efficient

equilibrium for the uniform-price entry auction if firms differ in their initial starting positions. Q.E.D.
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Section V

THEOREM 5: If3 we[0,w] such that V w < w, z(w,w) > z(W, W), a symmetric, pure-strategy

bidding equilibrium does not exist for the discriminatory-price or uniform-price entry auction.
Proof: If the sponsor conducts a uniform-price entry auction and contestant i deviates from the bidding

equilibrium by bidding as type w* his ex ante expected profit from the tournament will be:

w*

l//i = _[ I:ﬂ.i (Wi 2 Wm:n—l ) - Bm+1 (Wm:n—l )]hm:n—l (Wm:n—l )dwm:n—l

0

The first order conditions for this expression suggest the only possible equilibrium for this uniform-price entry
auction is the bidding function: B, ,,(w,)= 7,(w,,w,). This implies that firms must bid their expected profits
given entry in the tournament, assuming they will have the smallest endowment of w of all the entrants. But the
condition, 3 w € [0, w] such that V. w < w, z(w,w) > z(w,w), implies this bid is either decreasing for w
sufficiently close to W, or is constant for all w < w. Therefore a symmetric, increasing, pure-strategy bidding

equilibrium cannot exist. In the discriminatory price auction, the first order conditions give:

h(w,) . h(y)
B'(w,))=[z,(w;,,w;,)— B, (w,)]—=. Using B,(0)=0 we can get B,(w,)= | (Y, d
08 =0, (w00,) = B, Ow)l g 25 Using B,(0) get B(w,) {(”)H(wiﬂ
hy) ., hw) . . .
Therefore, B,"(w,)= | [7,(w;,,w;)— 7(y, d —— implying once again that either
() {[ ( )= 7(y y)H(Wi)]yH(Wi) plying g
B/'(w,)=0 VYw< w,or B,'(w,)<0 forw sufficiently close to w. Q.E.D.

Now, using expectation notation we will make the connection between our findings in Theorem 5
and our results from Section III and Section IV.
Let the w be independently distributed with cdf H(w) and density #(w). There are m firms that

gain entry and by assumption we have it that w; is the smallest w of all entrants, implying that all entrants

HO)=Hw)
1-H(w;)

can be said to have been drawn independently from the modified distribution of
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h(y)

— H(w;)

corresponding density of . Let Ay 1(Wn.n-1) be the density of the m—+1st highest bidding firm.

If firm i has endowment w; , but bids B, (W) in a uniform-price auction when its equilibrium bid is

B, (w;) then firm i obtains profits of:
w
Vi= I[E{”i (Wi sW_; )| W 2 Wy } - Bm+1 (Wm:n—l )]hm:n—l (Wm:n—l )dwm:n—l
0

First order conditions give: B, _;(w;) = E{/Z (Wi w_p)lw_; 2w, }
which corresponds to our previous findings in Theorem 5 for the uniform-price auction.

Suppose B, (w; ) is firm i’s bidding function for the discriminatory-price auction. Then profits,

if it bids B, (W) are:

= j [E{”z (Wi sW_i )| w_; 2 Winn—1 } - Bl (W)]hm:n—l (Wm:n—l )dwm:n—l
0

First order conditions give:

OB, (w) _ h(w;) h(w;) _
ow Hw) E{ w_)|w_; 2w | = By (w; )] H(Wi)[BmH(Wi) By (w))
Since reserve > 0, for some K > 0 it is true that: B (w;) = ) K+ me+1 (V)h(y)dy
w; "
OB (w;) _ h(w;) K h(y)
s G T HOw) | How) I [B’””(W )~ B () Hon)

é’E{ﬁi(w _lw_; 2w, }
ow;

1

We need to find an expression for:

To begin, we can write:
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hy (W)

E[ﬁ(wi;wk)—ﬂ(wi§wi)|wk 2Wi]: I[”(Wi;wk)_”(wi;wi)]m
T

Wi
1-H; (wy)
1-Hj (w;)

+T0"7T(Wi;wk) =M ()

= [ (w;3 W) — (Wi wp)] Ow,  1=H,(w;)

but when wy, = oo then [1-H(wy)] = 0, therefore the first term directly above goes to zero and we can

rewrite the second term to leave us with:

Or(w;w) 1= Hy (wy)]
owy hy (wy) ‘

(%) E[ﬁ(Wl-;Wk)—ﬁ(Wl-;Wl-)|Wk Zwi]:E{ W =W,

OB, (wisw_))w_; 2w,
However: { l( ! l)| i }:

ow;

1

i (Wi3w_i) hywpddw;  hy (w;)
{ }KZV{ I”(WWW‘”‘) fk 1=H, () 1—Hy (%)

hj(wj)dwj

RAUYE
j jﬂ( j;ti l—Hj(wl-)

K:tll Hk(w )

o (wis w_;) B(w) T % L hi(w;)dw;
E{ M }+K¢11 Hk(W)I v{.[ﬁi(wijw_i) iV i k)]ﬁﬁi 1-H;(w)

We can now substitute (%) into this expression to get:

ﬁE{ﬂi(w,-;w_i)lw_,-Zwi}:E ﬂﬂi(wi;w_l-)+zﬁfr(wi;w_i) he(w)  1=H (w)| -
ow; o, Owe  1=Hg(w;) he(we) |

1 1 k#i

But this equality just simplifies to:

é’E{ﬂi(WiQW—i)|W—i 2 Wi} E{i Or(wisw_;) (W) 1_Hj(wj)|w- > W}
J = 1

Moreover, when all competitors get their attribute endowments from the same distribution, we can further

simplify the expression to be:
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OE{m Onsw_)lw; 2w} h(w) Eio”zr(wi;w_,-)l—H(wﬂl

= w; Z W
ow, I-How)| |5 ow h(w;) \
from earlier we know that: B, . (w;) = E{l[i (Wi w_p)w_; 2w, }
Therefore, we can see that in the general case:
OB . (w; h(w; A a(wisw ;) 1—H(w;)
($) m+1( l): ( l) E Z ( i 1) J |WJZWI
ow, I-Hw)| |5 ow h(w)) \
e é’”(wi;w_i)l_H(Wj) . e .
Thus, if > 0, a symmetric equilibrium exists.
o ow; h(w;)
However, in Theorem 5 of Section IV we showed that when w represents initial starting positions
_ orn(wysw_;) , . .
then there is always some range of w such that 0,)— < 0 which means there is no symmetric
w .
J

equilibrium which was the subject of Theorem 4.

In Section III we saw that uniform-price auctions may work for differences in cost between firms
as long as a specific hazard rate condition is met by the cost distribution. When contestants differ in their
costs, the sponsor wishes to induce the /owest cost firms to enter so we must treat w as the inverse of

costs, ¢, and condition ($) becomes transformed into:

OB,a(e)) _ e | Z’”:ﬁﬂ(c[;ci)H(C,)|c ..
de, H(c,) de, ;(cj)‘*f‘ f

i Jj=1 j

($¢)

i dn(c;c.;) H(Cj)

Therefore, if E
de, h(c;)

}< 0, a symmetric bidding equilibrium exists and the (m+1)st
Jj=1

ch(c)
H(c) 1S

price auction is efficient for selecting the lowest cost contestants. But this in turn is true if

decreasing in ¢, which was our requirement from Section III for showing an efficient bidding equilibrium.
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THEOREM 6: The contestant-selection auction is an efficient mechanism for selecting the best-

qualified contestants to participate in a tournament.

Proof: If contestant i holds endowment w and bids as if holding W his expected profit from the

tournament will be:

= [ 72O, 2y D)y + K [ By (5)dy =B()
0

0
2 N
T 00 Wy () + Ky y (D= B and e 2 TRy
u
— = n(w,w)h,,.,_1(w)+Kh,,, 1 (w)—B'(w)
aw w=w . .
. Ou
Setting S =0 we have: B'(w)=z(w,w)h,,,_1(w)+Kh,,,_1(w)
Wii=w

Therefore, if an initial value is imposed of: B(0)=0 we arrive at the unique solution of:
w w
BOwW) = [ (3, ) hyps (0 + K [ Dy ()l
0 0

Since m(w,w) >0 V¥ w, the contestant-selection auction always has a symmetric, pure-strategy bidding

equilibrium which is strictly increasing in the winning attribute w. Q.E.D.

THEOREM 7: The expected cost of implementing a tournament using the contestant-selection
auction is independent of the interim prize, K, and equivalent to the expected cost of implementing
a tournament using a uniform-price entry auction whenever the uniform-price auction is efficient.

Proof: The ex ante expected bid of an arbitrary contestant which draws attribute w from H(w) is:

B(w)h(w)dw

= e
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u=B(w) and v=-[1-H(w)]dw
du=B'(w)dw and dv = h(w)dw

Integrating by parts, let us define:

w

Therefore: [ B(w)h(w)dw = —B(w)[1 - H(w)|; + T B'(w)[1- H(w)Jdw
0 0

The first term on the right-hand side of the equality is equal to zero, so we have:

w

[ Bohwdw = [ B w1-Howw = [ {m(w, )+ K}[1= HO) s (W)dw
0 0 0
However, h,. (W)= (n=D! [HW)]" 1= Hw)]™ " h(w)

» Tl (n—1—m)!(m—1)!

and Iy (9) = ———— [HOW] - HOn)]" h(w)
(n—1—m)!'m!

therefore,

m

; hm+1:n (W) = [1 - H(W)]hmn (W)

Substituting into the expression above we see that the ex ante expected bid is:

S s 3|

BOWADAdW = [ G, )+ Ky 0w = 22 [ 20,00y ()i 2
n 0 n 0 n

Since n firms submit bids, the total expected sponsor take from all » bidders is:
w
m.[ z(w,w)h,, 1., (W)ydw +mK
0

However, the sponsor must pay out mK to the m entrants, plus P to the overall winner.

Therefore, the sponsor’s total cost of conducting the tournament is:

W
P- m.[ z(w,wh,, 1., (W)dw
0

which is independent of the sponsor’s choice of K. Moreover, we know that if a pure-strategy

equilibrium bidding function exists for a uniform-price entry auction (e.g., when contestants differ in their
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cost of effort and the hazard rate condition is met), a contestant holding endowment w would submit an

equilibrium entry bid of 77(w,w). Therefore, the expected payment by each of the m entrants in a

w
uniform-price entry auction tournament is: j (W, w)h,, 1., (W)dw so the cost of implementing a
0
W
tournament using a uniform-price entry auction is: P — mJ- (w, w)h,, 1., (w)dw which is equivalent to
0

the cost of implementing the contestant-selection auction.

Q.E.D.
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