Revised May 1984

EFFECTIVE COMPUTABILITY IN ECONOMIC DECISIONS

by

R, Preston McAfee¥*

ABSTRACT

The theory of effective computability provides a useful handle on a
wide class of economic problems, An overview of this branch of mathematical
logic is provided, and applied to a variety of problems, In particular,
it is shown that Rational Expectations equilibria exist under almost any

sensible circumstances, in contrast to previous results,

*Assistant Professor of Economics, University of
Western Ontario, London, Canada, N6A 5C2, The author wishes to
thank the attendees of the Convergence to Rational Expectations
Workshop, 1981, and Jeremy Greenwood, Peter Howitt, Glenn
MacDonald, John McMillan and Michael Parkin for thoughtful
discussions, Any errors are my own,

Introduction

This manuscript has three objectives, The first is to demonstrate that
a branch of mathematical logic known as the theory of Effective Computability1
is necessary to model some economic problems, The second is that this approach
provides some quite useful and interesting results to a class of significant
economic problems. Finally, I propose to introduce the reader to the simpler
theorems in this area,.

Toward the first objective, I will argue that the models of existence of
rational expectations (RE) equilibria, as considered by Radner [6] and others,
are basically inappropriate, in the sense that the equilibria found do not
correspond to equilibria achievable by agents constrained to actually make the
forecasts required of them. That is to say, the constraint that agents be
able to actually forecast the outcome of an RE equilibria in these models
cannot be satisfied. In addition, I will introduce a variant of the Prisoner's
Dilemma that cannot even be modelled at all outside the context of effective
computability, I think this model has a peculiar charm, but it is contrived.

Toward the second objective, I will show that, under a rather compelling
assumption on the method of an economy arrives at a price outcome, rational
expectations equilibria always exist. In particular, it will not be necessary
to presume the existence of an auctioneer as in most models: the method
taken is entirely compatible with a decentralized economy, In addition, no
conditions on the dimension of the price of signal space are relevant, Further,
I will solve my contrived Prisoner's Dilemma. In addition, I will make some
observations on the effects of including the cost of computation into a
variety of economic problems, including research and economic organization,

Unfortunately the results in this case are basically unpleasant, although

this is informative,

In order to achieve the second objective, I find it economical to
provide an overview of the theory of effective computability, as few readers
will be acquainted with it, I have limited myself to the results that have
direct applications, and their antecedents as comprehensibility dictates.
Nonetheless, this requires a substantial investment by the reader, I find
it difficult to explain the RE theorem without reference to this development,
and this yields the following format, In the next section, a wvariant of the
Prisoner's Dilemma is proposed and discussed, In the third section, an overview
of effectively computability is provided. I have labored to assume only an
understanding of sets, functions and so forth, along with an understanding of
countable and uncountable cardinalities, For the latter, the uninformed reader
is referred to Goffman [3]. For an excellent introduction to effective
computability, see Machtey and Young [5], For more advanced methods, see
Rogers [7]. The fourth section presents, discusses and solves an RE problem
that is basically Radner's with the constraint that all agents in the model must
be able to actually compute, in the practical sense (although unrestricted by
functional form,2 of course), their forecasts. It is interesting that restricting
the space of forecast functions makes the problem more likely to have an RE
equilibrium, This is not counterintuitive, as restricting the space of forecast
functions also restricts what agents must compute about each other,

The fifth section suggests some other economic problems clarified by
the theory of effective computability, including the optimal amount of research
and the optimal organization of resources or markets, In addition, other
avenues of enquiry which would likely benefit from this approach are provided,

along with a list of conclusions,

Finally, I wish to add a disclaimer, The solutions to the economic
problems presented in this paper would be transparent to any graduate student
in mathematical logic. Indeed, the problems were posed in such a way to make
the solutions consistent with an overview of effectively computability, subject
to the problems retaining their economic content. The purpose of this
manuscript is as much to illustrate the application of effectively computability
in economic theory asto solve the problems, although the RE problem is of

major economic significance.

Surprise Attack

This problem is a variant of the prisoner's dilemma, in its "one shot"
form, Two neighboring nations are considering whether to attack or mnot., Should
one attack and the other not, the former obtains a tactical advantage that
leads it to conquer the latter, Otherwise, a stalemate obtains, The payoff

structure is:

Nation 2
Attack Don't Attack
Attack (-$100,-$100) (5100, Death)
Nation 1
Don't Attack | (Death, $100) (0, $0)

The first argument of the payoff pair is paid to Nation 1. This is the usual
prisoner's dilemma, with mutual attack as the ordinary Nash equilibrium, However,
these two nations are unsatisfied with perpetual war and the following alteration
to the problem is proposed, Both nations will write computer programs Pi’ i=1,2
which provide their defense strategy., These will be given to an international
body which will then let Pl "examine" P2, that is, input P2 to Pl’ and vice versa,
Afterwards, Pi provides the decision for nation i, To state this formally, P1

will, after taking P2 as an input, dictate the action of nation 1, Nation 2 is

symmetric, A more informal way of putting this is to wonder whether the nations

can choose a decision strategy which, if the decision strategies are common

knowledge, allows the no attack outcome to be achieved, This coincides

with asking whether no attack is a Nash equilibrium in decision strategy space,
I contend that this problem has no resolution outside the consideration

of the properties of programs that can actually be written, Notice that the

program that dictates that one does whatever the other nation proposes to do

is no strategy at all if both nations choose it, Thus, one has to design a

more complicated strategy? Assuming death is arbitrarily undesirable, the

following definition captures what an optimal program should satisfy,

Definition: P is an optimal program for surprise attack if

i) for all programs Q, P on input Q never results in death
and ii) there does not exist an P’/ satisfying (i) so that

{Q/P’ results in mutual attack} §:{Q/P results in mutual attack}.

That is, P is optimal if it avoids death at all costs, and no other program
successfully avoiding death results in no attack on more inputs, Thus, we have
defined P to be optimal if it pareto dominates all other programs., The following
proposition resolves the issue,
Proposition: There exists a program which never results in death and, if the
two nations are the same, results in no attack. There does not exist an optimal
program,

This proposition solves surprise attack in the following sense, The
exchange of strategies results in the existence of a strategy strictly dominating

the ordinary Nash equilibrium, However, there is no best strategy, in that

for any proposed strategy P, there is another that does no worse on any inputs,

and strictly better on some,

As a practical aside, one could motivate surprise attack as follows,
Suppose the U,S, and the U.S.S,R, agree to exchange their respective defense
computer programs that direct the firing of their ICBMs, What should these
programs look like? Of paramount importance in such a program, there should
be no opportunity for the other nation to launch a surprise attack, In
addition, one should like to avoid mutual annihilation insofar as is consistent
with the first objective, That is, one should like to take advantage of the
altered nature of this game to improve on the mutual attack outcome of the
ordinary Nash equilibrium, The proposition resolves this insofar as is possible,
The nations can improve on the Nash strategy, but there is no best strategy,

The proof is actually trivial, and relegated to the appendix,

Although this problem is contrived, it does possess a certain economic
content, An Nash equilibrium in an economy where decision strategies matter
would normally consist of a solution where each agent acts given the strategy
of the other agents. Recursive functions provide a handle on this type of
problem, This, in some sense, prefigures our analysis of rational expectationms,
in that rational expectations requires each agent to find expectations, given
the manner in which other agents compute expectations, That is, we are looking
for forecast procedures which take as inputs the other agents' forecast procedure,
Surprise attack is merely the rational expectations problem without any signals
at all other than the forecast procedure. There is a trivial rational expectations
equilibrium--always attack, However, we've shown that when the individuals
are permitted to exchange their strategies, they may improve on this outcome,

Consequently, they will have an incentive to do so,

Algorithms

At this point, we shall digress to consider the theory of algorithms
apart from any particular economic criteria. The exposition is keyed to
the eventual return to economic applications, and for this reason most of
the results are presented in forms appropriate to the applications. We need
to prove one theorem for insight, the others will be stated without proof.

The question of what precisely constitutes an algorithm is no longer
subject to much debate. Intuitively, an algorithm is a finite set of directions
which tells an agent precisely what to do under all circumstances which
may arise, Just what constitutes a set of instructions depends on the
language in which they are expressed, and the meaning assigned to the various
terms in the language. This is, of course, not unique to the notion of
algorithm, For when any intuitive idea is formally expressed, it is then
an issue whether the subjective notion has been captured by the definition.
Clearly one cannot prove a definition encompasses the notion, rather one
can only provide evidence in the sense that one shows the definition acts
like the notion.

Before continuing with the definition of an algorithm, it is of some
use to consider a property of algorithms, their input/output behavior.
Consider computing n factorial, n!. We have an input, the number n. One
may compute n., utilizing two memory banks, say x and k. Initially set both
memories equal to n. Then use the following procedure: If k # 0, multiply
x by k and then decrease k by one, and if k = 0, print x. This algorithm is
said to compute n. ., Observe there is a distinction between the function
computed, nd , and the algorithm that computes it. In general we have,
corresponding to every algorithm, a function which is the input/output
behavior the algorithm computes. These are naturally called the computable

functions, the functions that correspond to the input/output behavior of

algorithms. We shall use the word program synonymously with algorithm.

Many characterizations of algorithms exist, and they are all
equivalent in the sense that they compute an isomorphic set of functions.
In this way, it appears that the various definitions capture the essence
of algorithms. No one has been able to propose a pattern of behavior that
looks like an algorithm and cannot be expressed by any of the various
definitions. That every algorithmic behavior can be expressed by any of
the definitions is called the Church-Turing Thesis.

It is not useful to us to actually write down a formal definition.
For this, and for evidence of the Church-Turing Thesis, the reader is
referred to Machtey and Young [5], What we do need is a procedure for listing
the algorithms in an effectively computable way. That is, we desire to number

the algorithms with natural numbers (the set N={0,1,2,...}). To do so, we

need to consider an alphabet with which to express algorithms. We shall
demonstrate that algorithms defined over a complex language are essentially
equivalent to algorithms defined by numbers, called Godel numbers, and which take
as inputs and outputs only a single integer. This surprising result, that the
complexity of languages with countably many symbols (characters) in their
alphabet buys no generality, is shown by writing down an algorithmic
isomorphism between the complex language algorithms and the simple ones.

Thus there is an algorithm which permits us to write algorithms in one
language and map these into the other language. What this demonstrates

is that any function that can be computed in one language can be computed

in the other. This permits us to consider the simpler case without loss of

generality. The demonstration is relegated to the Appendix.

8

Our characterization of algorithms, to summarize, shows that an
arbitrary formulation is equivalent to algorithms Ao’Al"'° over N. As
we mentioned, these algorithms compute functions. Of course, an algorithm
is not guaranteed to terminate, and in this case we adopt the convention
that the functional output is =, Thus, for each An’ we have a computable
function @, N-» N | {=} so that the output of An on input x ¢ N is
¢h(x) if An terminates on this input, and « otherwise. An on input x is
written as An(x). The input/output behavior of An’ denoted by @,» are
the computable (or recursive) functions,

Although our construction allows us to write ¢; as having one
input, it is sometimes convenient to write Q% as having two inputs, rather
than going through the laborious decoding. This convention will be adopted
freely, and the reader is reminded that we can always encode the pair into
a single integer.

An example of this is the universal function, ¢h(n,x). ¢h(n,x) =
¢h(x) for all n and x. To see that ¢h exists, observe that given input
n, we can reconstruct algorithmically the program corresponding to n. We
may then run this program on input x, and obtain ¢h(x). This is clearly
an algorithmic procedure, so there must be a universal algorithm, and hence
universal function. Consequently, we need only one algorithm to compute all
algorithms.

Another example of what can be done with algorithms is called an
s-m-n construction. Suppose we have a function @k(n,x). Then there must

exist a computable function g so that ¢k(n,x) = (x), and furthermore

% @)
g is total, that is, g(n) # « for all n. The reason is that given k and
n, we may write the program out which, on input x, computes ¢k(n,x). This

program has a number, which is g(n). g is the function of n which encodes

the program that is the kth algorithm initially provided with n.

This is a program (hence g(n) # =) and provides a construction of g's
algorithm, showing g is computable. This demonstrates that the distinction
between a program and the inputs to a program is a blurred one.

One of the fundamental results is the Recursion Theorem, also called
the fixed point theorem of computable functions. It will be used to

establish the general existence of rational expectations.

Recursion Theorem: let f be a total computable function
(that is, f(n) # « for all n). Then there exists an no

th = .
so at ¢f(n) ¢n

o o}
Obviously the programs with numbers f(no) and n, will differ in general.
Nevertheless, the Recursion Theorem shows there will be two algorithms
with the property that ¢E(no) (the output of f given the input is the
program no) has the same input/output behavior as ¢% .

o
Consider writing the program described in footnote 4. Let f(n) be

the program, so that, on input x, it does the following:

DON'T ATTACK if x=n

Print
ATTACK if x#n

It is trivial to write such a program. The Recursion Theorem, hence,

guarantees there exists an n so that qa = ¢%(n y that is, the program
0 0 '

doesn't attack if and only if it meets itself.

Now consider £(n) to be the algorithm which computes An first, and

if this terminates, prints the output plus one. Thus the Recursion Theorem

10

implies ¢a = ¢%(n y* If An terminates, we have by construction that
o o

= = + . i i i = =
¢h ¢%(no) ¢ho 1 Thus it is clear Ano cannot termlnatgivtﬁafv¢ho ® ¢%(no).

In economic situations, it would be useful to rule out the use of algorithms
that do not terminate, for these cannot be cost effective computational
procedures. The following theorem demonstrates that this is impossible in

general. We include the proof as it will provide some intuition.

Theorem (Godel Undecidability of the Halting Problem): It
is algorithmically undecidable if an arbitrary program

terminates.

Proof: By contradiction. Suppose we can write an algorithm
H(n,x) that decides 1if An(x) terminates. If so, we can assume
1 if An(x) terminates

H(n,x) = . Then we can write a new
0 if An(s) doesn 't terminate

program of one input as follows: ''compute BE(n,n). If a one is
obtained, do not terminate. If a zero is obtained, print zero,
and terminate." It is clear this is a program, because we can

write a program which doesn't terminate. Thus it has a number,

say j. Now comsider if H(j,j) = 1. Then by the definition
of H, Aj(j) terminates. By the construction of Aj’ Aj in
this case iterates forever. So suppose H(j,j) = 0. Then
by the definition of H, Aj(j) iterates forever. By the
construction of A., Aj prints zero and terminates. Either

J

way, a contradiction obtains, Thus no such H exists.]

The question of whether an arbitrary program terminates is called
the halting problem, and we have demonstrated there is no algorithm to
decide the halting problem. As a result, the halting problem is thus

said to be (algorithmically or Godel) undecidable. This is perhaps the

11

most accessible undecidable problem known. From this, most of the wide
class of undecidable problems can be constructed. Before stating these,
we shall consider an intuitive reason why Godel undecidability occurs.

Some readers may recognize Russell's Paradox embedded in the
undecidability of the halting problem. Russell's paradox is based on
the construction of a set of sets which are not members of themselves,
and in this way is defined over all sets, including itself. Similarly,
the program H is self-referential, it has to decide if H terminates, worse,
programs based on H must still be determined by H. In a sense, the problem
is that H falls within its own scope of analysis.

Many of the things that one might wish to compute are in fact

undecidable, as the following shows.

Rice's Theorem: Suppose g # R i N, where R is a set of
computable functions. Then it is undecidable if an arbitrary

ngR.

Rice's Theorem can be verbally expressed as follows. Suppose P is a
property of computable functions, and P is nontrivial in the sense that
neither all functions nor no functions display this property. Let R

be the set of functions (as given by their numbers) displaying P. Then

it's in general undecidable if an arbitrary algorithm computes a function
with property P.

For example, undecidability of halting problem follows from P
being the property that the function is never infinite. Similarly, if
P is the property that the function is constanﬁ, it is undecidable if

an arbitrary algorithm computes a constant (e.g. always attack) .

12

One of the primary concerns of economists is the cost of various
activities, and this applies to computation also, While specific computing
devices have various properties, some powerful results follow from quite innoccuous
assumptions about a cost structure., Let @n(x) be defined to be the cost of
running An on input x, Assume:

i) Qn(x) = ® if and only if An(x) doesn't terminate

ii) it is decidable if én(x) < $y.

The first assumption says that cost is infinite if and only if infinitely many
resources are used. To see how we can decide if §n(x) < 8y, simply run An
on input x for S$y. If An has terminated, the answer is ves, otherwise no.
For any reasonable model of computation, these hypotheses seem eminently
plausible, 2 is called a complexity measure,

These hypotheses lead to a theorem of some economic import:

Blum Speedup Theorem: Let g(x,y) be a total computable function
so that g(x,y) < g(x,y+!). Then there is a total computable
function f so that if o, = f, there is a k so that @ = f and for all

but finitely many x, g(x, @k(x)) < @m(x).

For example, let g(x,y) = (xy)z. Then there exists a function f so that
for any means of computing f, Am, there is another way of computing f so
that, for all but finitely many x, ék(x) < i V"E;TET . For some &, in
particular when "table look up" is inexpensive, it is possible to make the
result true for all x, by patching Ak with a table of the values for the

finite set,

The Blum Speedup Theorem dashes all hope of being able to generally
minimize the cost of computation. Of course for some particular functions
it is possible. But no matter how the cost of computation is imposed, one

cannot hope for a general cost effectiveness.

13

There are many more results in the Theory of Algorithms that have some
significance to economists. However, these results convey some of the profound
implications and general flavour of the field., As we shall see in the
following section, many of these results have implications in rational

expectations and other areas in economic theory,

Rational Expectations Equilibrium

We will adopt the model of Radner [6], with the following constraint:
any forecast procedure used by agents in the model must be effectively computable,
Prior to introducing the model, it is sensible to defend this additiona}
constraint. The motivation is as follows. If one requires agents in a model
to forecast with functions that are not algorithmic, then one is requiring the
agents to do the impossible, Indeed, a forecast that cannot be computed is

useless--the agent cannot figure out the forecast, much less act on the forecast,

That is to say, the study of RE equilibria is the enquiry into the existence
of self-fulfilling expectation procedures, and when these are not procedures,
they are without economic content at all,

For most economic problems, e,g. supply and demand, the imposition
of computability amounts to the 'integer problem', in that one expects supply
and demand to be computable, Indeed, if the profit function is computable,
profit maximization yields the computation of the supply function, and so on,
and the smooth real analysis model will approximate the discrete computable
function model arbitrarily close, with wvirtually no loss at a great gain in
elegance, However, when computability constrains expectation functions, the
character of the results alters entirely, That is, when all agents are using
functions to analyze all other agents' functions, the self-referential nature

of this problem makes computability significant,

14

This section will demonstrate that, under arbitrary conditions, RE
equilibria exist, The definition coincides with that of Radner, with the
restriction of all functions to be computable, Second, some of these equilibria
have a peculiar characteristic in that all agents may spend an infinite (unbounded)
amount of time computing the equilibria, Finally, no procedure exists for
separating the models with this peculiar (and undesirable) attribute from
those that don't,

There are I agents, indexed by i=l,...,I, and they wish to forecast a
distribution of a random variable p ¢P. Each individual receives a drawing
or a private information walue x ¢X, Both P and X are countable sets. Given
that agent i forecasts the joint distribution of PyX, to be ¢h.(p,xi), the

i
true distribution of (p,xi) will be Gi(nl,.,.,nl,p,xi) where n, identifies

®

n,
i

o, may depend on the agent in question because the meaning of

X € X could be different for distinct agents. The (nl,...,nl) is a RE
equilibria if

L soni(P,xi) = 0;(ny5e.5n5p5%,) i=l,...,I

We now assume Gi is algorithmic, that is, an algorithm computes Oi' If this

assumption fails, then (1) cannot hold, because ¢h is assumed algorithmic. The
i

plausibility for this assumption is simply seen. Embedded in o is the
notion of market clearing, and how forecast prices affect the true outcome.
Usually, forecast prices are used in maximizing expected profits, which
result in firm outputs. The sum of these outputs is entered into the
inverse demand functions to obtain the true price, with a stochastic
element perhaps. This is, up to the stochastic element, algorithmic. The

profit maximization is explicitly solved by the firms in some fashion and

is thereby algorithmic. Demand is algorithmic as well in that there must

15

be some procedure for computing it; otherwise it would not be possible to
decide how much to buy. The o may represent a relatively centralized
function, as in the excess demand function, z(p,s) = 0, used by Radner [6],
or may represent a quite decentralized procedure whereby markets clear
partially at a local level, and then differences in outcomes are exploited
by arbitrage. In either case, procedures exist for finding the value of p

up to a stochastic element, forcing ¢ to be algorithmic.

Theorem 1: If o, is algorithmic, there exists 0y 5eeesnp SO that (1) obtains.
Proof: By the s-m-n theorem (Rogers [7], theorem V, p., 23), we may
equivalently write (1) as (suppressing x,p):

(2) O =0 i=l,...,I.
n, fi(nl,...,n

1)

By the Recursion Theorem (Rogers [7], theorem III, p, 181) we obtain
a function n{(nz,...,nl) so that

(3 Q=0 % .
nf fl(nl’n2""’n1)
Write:

Op o * = .
£ (npseeomy) fz(nz,...,nl)

Using the Recursion Theorem, we obtain n;(n3,...,n1) and

2 % =0 2 % *
n, fz(nz,n3,...,n1)

. k * % *
Inductively, then, we let fi(nk"°"n1) = fi(nl’n2""’nk-l’nk"”’nl)

and obtain

(4) %P r =
nk fk(nk’nk+ :"':nI) k=1,...,I-

Then, if ﬁI n? and ﬁk = n:(nk+1,...,n1), equations (3) and (4) are equiva-

lent to:

16

(Dﬁi B f(ﬁl)---;ﬁ1)> i= ,...,I.

This is precisely (2), as desired.
]

This theorem is quite general, but unfortunately cannot distinguish
the two cases of importance. Consider the simple example where p is a
monetary aggregate, X = ¢, and the policy is to let agent 1 forecast p,
and then make the forecast wrong. This is analogous to the time comsistency
problem considered in Kydland and Prescott [4],
Thus, o is constructed so that, as soon as agent 1 makes a forecast, he is
guaranteed to be wrong. Clearly agent 1 will never make a forecast in this
case, and that way will be correct. Because the value of p cannot
come out until agent 1 makes a decision, if agent 1 indefinitely delays,
then p will never come out. Thus agent 1 is correct in his "empty"
forecast.

There is another way of viewing this as well. Consider a game
with two agents, one of whom plays second. Rational expectations on the
part of the first guarantees that it is not possible for the second
player to exploit the beliefs of the first player about the second player.
In many games, however, the ability to play second always allows one to
capitalize on the first player's beliefs. 'The money supply game is an
example. The first player does have a rational expectations counter
strategy to the second player's exploitation of the first player's beliefs,
which is to delay. If the second player follows the rule of 'exploit the
first player's belief', he must also wait until the first player acts.

There is an interesting interpretation of this, relevant to the bond
market. If the monetary authority follows a rule that invariably wipes

out the return obtained by buyers of long-term bonds, the RE policy for

17

potential bond buyers is to never decide to purchase bonds. Consequently,

the long-term bond market never opens. This provides a somewhat different

view of time consistency than existed before. In most RE models, it was
assumed that RE implied that individuals could act as if they knew the
distribution of future inflation rates. Consequently, the time consistency
problem arose, as once these individuals commit themselves by purchasing
a bond, the government's optimal policy may require fooling them. The solu-
tion is that, if the government plays second, they delay indefinitely.

This case is to be contrasted to the case when individuals know the rule,

and decide not to buy. In that case, the individuals know that the government

will fool them, and so choose not to buy. Consequently, they have reached
a decision, and so the government may then play. This is different from
keeping the government in suspense, by not reaching a decision. There is
no difference in purchasing, but there is a behavioral difference on the
part of the government, whose role requires that they wait until the indi-
viduals make a decision. If the individuals never predict an outcome,

and no outcome occurs, then the individuals trivially display RE. If the
individuals don't predict an outcome, but decide not to act, the government
may then play, and make the individual's lack of prediction incorrect.

An element of self-reference separates these two cases. If the indi-
vidual tries to analyze the government's policy, which functionally depends
on the individual's policy, the individual is forced to analyze himself,
and hence analyze his analysis of himself, and so forth. In the other case,
he knows the government will fool him, and so decides not to buy bonds.
Thus, the individual does not bother to analyze himself. The latter may
be optimal, but it is not rational expectations. As the purpose of this

paper is merely to demonstrate the possibility of RE, the fact that the

18

individual can defeat the policy that the second player always fools the

first is sufficient.

Evidently we would like to distinguish the cases when forecasts
actually are made, which can be considered as the market opening, and the
The

case where no forecasts, and hence no actual outcome of p, occur.

following theorem demonstrates this is not possible in general.

Theorem 2 (Kleene): There is no effective procedure for ascertaining whether

arbitrarily chosen o will result in a forecast.

Proof: This is Theorem VIII, p. 26 in Rogers.

This theorem shows that there is no effective decision procedure
for splitting the o's which open the market from those that do not. One
particular class of ¢ will open the market, however. Consider the c¢'s
that must terminate in a fixed amount of time. That is, if the agents
fail to make forecasts in T units of time, a distribution T(Dseen,PrX,p)
will emerge anyway. Then, clearly, the RE equilibrium will not involve
infinite delay.

To make this point clear, consider a simple model wherein agents
forecast a grice, P;’ produce yi(pi) that maximizes profit, and then actual

. . i . . .
price is p(Z v.(p.)). RE occurs if pJ =p(= y,(pl)), as there are no
i=1 1 f £ i =]. 1 f

random disturbances. Now, suppose that if an agent does not produce by'
time T, vs is zero. Then, if the agent fails to forecast, a price
still emerges. Thus, not making a forecast is not RE, so RE will involve
a forecast.

It should be mentioned that the procedures used by agents in Theorem 1
will not, in general, be optimal. The purpose of Theorem 1 was to demon-

strate that rational expectations is possible, not that RE is optimal. Indeed,

19

the only circumstances where RE appears to be optimal occurs when the cost
of computation is zero. An advantage of taking the procedural component

of expectation formation into account is the ability to explicitly include
the cost of computation in the optimization. This advantage is weakened

by the extreme complexity of computational cost measures. This is discussed

further in the next section,

This section demonstrates that the hypothesis that expectation formation

procedures be computable implies the existence of RE equilibria in general.
Unfortunately, unless bounds are placed on the length of time computation
may occupy, in some cases RE may require eternal computation. In additionm,
it is not possible in general to distinguish models where the agents plot

forever, which is analogous to the market not opening, from those that do.

Conclusion

In this section, we shall present some further considerations in
applying effective computability to economic decisions. These are
presented at a more intuitive and speculative level, in comparison to
the analyses of rational expectations and surprise attack,

Consider the notion of rationality. Let us say, for example,
that a firm is rational if it maximizes profit. From Rice's Theorem,
we know that it is undecidable if an arbitrary algorithm maximizes
profit. There will thus be algorithms where it is not possible to
establish if they are rational. Rationality is hence undecidable in
general. Note that any property can be substituted for rationality,
as long as it is possible that a function displays this property, and
possible that it doesn't.

As another application, recall the Blum Speedup Theorem, which says

that for some functions, it is not possible to compute in an optimal way.

20

Thus our hope of profit maximizing subject to the cost of computation

(among other costs) is not in general realizable. One might hope to add

the cost of obtaining the minimum cost computation to remove this difficulty,
but of course there will be a Blum Speedup Theorem for this adjusted

cost structure.

This should not appear too surprising. In general we should expect
that, to ascertain the optimal amount of computation one should do involves
doing too much, and even then one doesn't know if one stopped just short.
of a great breakthrough., This makes the optimal amount of research
undecidable in general, That there should always be an incredibly cheaper
way of doing the same thing is perhaps a bit more startling.

In this paper, we have not written down a definition of algorithmic

behavior, which has simplified the theoretical presentation. The following
application depends on a model of algorithms and consequently shall not

be as precisely stated as might be desired. We shall provide the intuition

only.

Algorithms work by having rules of manipulation which are applied
in a systematic fashion to a state of a system. Economic structures
operate in a similar fashion. There is an initial state, and such operations
as production, consumption, transportation and exchange occur. That these
correspond to the operation of algorithms may be observed. Production
corresponds to calculation, where inputs are operated on to achieve an
output. Consumption might correspond to erasing a file, while transportation
and exchange change attributes (location and ownership) of files. Thus,
an economy in action is not unlike a program being operated; indeed, most

empirical work depends on this analogy.

21

This mapping leads to several observations. There must be economic
structures for which we cannot decide if they have the same feasible set
(To see this, consider the set: {n/¢h= ¢k} for some fixed k. It's
undecidable if an arbitrary i 4is in the set.) In fact, the results we
have obtained apply not only to the processing of information, but to
general economic operations. Suppose we consider a set of economic
procedures corresponding to production of goods, and write ''programs"
with these procedures. If the initial set of procedures is sufficiently
complex (just how complex is beyond the scope of this paper, but it is not
unreasonably complex), we can obtain the set of algorithms through it,
Imposing a cost structure on these procedures such as is imposed for the
Blum Speedup Theorem yields: 1In general, there will be achievable outcomes
for which there is no cheapest way of reaching that outcome for all
but finitely many initial states. That is, in general, cost minimization
will not always be possible in real economic processes.

This is intuitively appealing. We are aware that it is not feasible
to turn electricity into physical motion with 100% efficiency, as some
energy is transformed into heat. However, there is no reason to believe
that there is a most efficient motor either. Essentially we have argued
that there is not necessarily a most efficient economy for a similar reason,
for under some circumstances there is no cheapest way of doing a given
transformation. This may be viewed as following from the inherent
discreteness algorithms entail. That such a phenomenon is provably a
feature of a large class of economic structures (essentially those with

a minimal complexity) is perhaps interesting.

22

To try to sum up, imposing the restriction that agents actually
be able to compute a forecast procedure may narrow the agents' choices
significantly. This is particularly true of models of the world where how
an agent thinks about the world has an effect on how the World comes out.
Despite this, we can guarantee the existence of rational expectations, although
it will in general not be decidable if a particular decision rule is in
fact a rational expectations rule. This fact rules out some things both
modelers, and agents in the model, might desire to do.

One further related topic concerns the computational complexity of
decision procedures. While it may be possible in principle to solve a given
problem, the cost may be prohibitive. Many intractable problems have been
identified, and it is likely they appear in Economic Theory as well. One

such problem is found in the theory of auditing Bailey et al [2].

23

FOOINCIES

1Recursive Function Theory, the Theory of Algorithms and the Theory

of Effective Computability are symonymous.

2Anderson and Sonnenschein [1] provide an RE exampie where agents
can actually forecast the prices, by using least squares, which we can
clearly compute. Unlike that paper, this paper considers all possible
computable forecast procedures, as it is possible for an RE forecast

procedure to fail to be a least squares method.

3One obviously runs into an infinite regress in the usual approach
to this problem. Observe also that this model is similar to the choice
of a strategy in a supergame, except that one does not exactly choose the
strategy given the other's strategy. Rather, one chooses a metastrategy
that maps the other person's strategy choice into an outcome,

4 . \ .
One might desire to use a strategy which attacks unless the other

person is using the same strategy, in which case it (and hence both) don't
attack. To do this, one has to show that one can write a strategy that

can recognize itself., We shall prove that one can, and it is precisely this
fact that is difficult to even contemplate outside the domain of effective
computability. One might have hypothesized that a program which recognizes
itself must, of necessity, be longer than itself, as it would appear to have

a copy of itself embedded in itself. This reasoning is incorrect.

24

REFERENCES

[11] Anderson, R., and Sonnenschein, H, '"Rational Expectations Equilibrium
with Linear Models," Econometric Research Program Research
Memorandum No, 286, 1981,

[2] Bailey, A,, McAfee, R. P., and Whinston, A, '"An Application of
Complexity Theory to the Analysis of Internal Control”,
Auditing: A Journal of Theory and Practice,"” 1, no. T,
pp. 38-52,

[3] Goffman, C. Real Functions, Prindle Weber and Schmidt, Inc.: New
York, 1953,

(4] Kydland, F.,and Prescott, E., "Rules Rather than Discretion: The

Inconsistency of Optimal Plans," Journal of Political

Economy 85, no. 3, 1977,

(5] Machley, M., and Young, D. An Introduction to the General Theory

of Algorithms, North-Holland, New York, 1978,

(6] Radner, R. "Rational Expectations Equilibrium: Generic Existence
and the Information Revealed by Prices," Econometrica 47,
no. 3, 1979,

[7] Rogers, M., The Theory of Recursive Functions and Effective Computability,

McGraw Hill, New York, 1967,

25

APPENDIX

Demonstration that General Algorithms are Isomorphic to

GYdel Numbered Algorithms over N

The actual construction of this mapping may appear to be tedious detail,
but it serves three purposes. First,. it provides some inéight into a major
method of the theory of algorithms, which is to actually display an
algorithm that performs a desired job, to prove that job can be done.

Second, it will provide some contact with algorithmic processes, which
reminds us how radically different computable functioﬁs are from real
analysis functions. Finally, a startling result is proved, namely that
it is entirely irrelevant to the computability issue whether a large
number of inputs exist or a single one does. When one considers how
much more complex an economic universe is when a second good is added,

one sees the power inherent in this construction.

Consider a possibly infinite alphabet al,az,a3,... . First, we
wish to represent words in this alphabet with numbers (the reason will
become apparent). We shall let a string of n '"l'"s mean a . To write aa s
write n "l"s followed by a zero and then followed by m "l's. In general,

to write the word a_a ,...,a_ , WClte n, ""s, then a zero, then n, l's,

n. n n
1 72 k
then a zero, and so forth. To separate words, put two consecutive zeros.

2

In this way, an algorithm written in the language comprised of an infinite

alphabet a;,a can be expressed as a sequence of zeros and ones. That

2,0‘-
is to say, we can consider our algorithm to be written in a binary code, because
in that code we may express the more complex alphabet ;5350000 ¢

Some of the numbers in the binary code will not be meaningful, that

is, they will correspond to gibberish when expressed in the original language.

The simplest way of dealing with this is to say that if an expression (in
our language or in the binary code) does not correspond to a meaning ful

set of instructioms, it is said to correspond to an algorithm which does

26

nothing. To see why we can say this, consider running programs on a
computer. If a program is written which is not meaningful in the computer
language, the computer just halts, perhaps with an error message. In the
same vein, we shall let things which are not algorithms merely not be
processed, and either print 'error' or any other term of our choice.
These may be useless or trivial algorithms, ones with no meaningful
directions, but they may be considered to be algorithms nonetheless.
As a result, these non-programs become programs (or algorithms) in our
revised view, by establishing a "default option'.

Thus, we can number the algorithms with natural numbers: AO,Al,AZ,... .
The number of the nth program is the binary representation of the directions
and is called a G&del number. Clearly the inputs can also be trans formed
into numbers by the same procedure, so that we need to only consider
algorithms which take tuples of integers as inputs. Of course, we can
also make the output into tuples of integers, again by the binary mapping.
We will consider An and the representation of the code, n, to be synonymouss

We have spent some time detailing a method of obtaining Godel numbers
for algorithms because it is of importance that this procedure be
algorithmic. The description has revealed an algorithm to produce the
GYdel number from a program, and vice versa, and thus we know the procedure is
algorithmic. Consequently, we can write an algorithm to translate integer
inputs and the GSdel number into a character string input and an algorithm,
respectively, in the original language. Then we may do the computation, and
translate the output back into numbers using the binary coding procedure. For
this reason, the set of algorithms over an arbitrary language with countably
many characters is equivalent to a prbéramming sysrt:.'em where programs are
integers and inputs and outputs are strings of integers.

Actually, this is weaker than need be. Consider the 'pairing

function", < , >, given by:

27

<an,n> = 2m(2n-+1) -1, myn g N

You may verify < , > maps Nx N into N bijectively. As a result, a
pair of integers may be encoded into a single integer. To encode tuples

of integers of arbitrary length, consider:
Ecﬁj..”xn)=<m <X <x2, <N.Q%Pl,xn>u.>

Given a single number, we may decode a tuple by first decoding n, which

is the number of times two divides E(xl,...,xn)-+l evenly. From the
E(X ,eoO,X)+l
. 1 n . . .
remainder, , we may find X5 using a similar procedure. We

2n

do this n times, which we can do because n was the first number observed.

The remainder at this point is 2xn+ 1, from which we decode X e Consequently,
we may at will translate tuples of integers of arbitrary (finite) length

into a single integer. Thus, we may consider our algorithms to take a

single integer as an input and produce a single integer as an output,

because that corresponds to the world where tuples are taken as inputs and
outputs by an algorithmic mapping. This greatly simplifies notation, without
loss of generality, for we know that algorithms which take a single integer
input, and are described only by a number, and produce a single integer
output can be algorithmically transformed into the seemingly more complex

world where character strings describe the algorithm, inputs and outputs.

The reader is reminded that the theorems we shall state have equivalent
formulations in the more complex language.

Before continuing, it is useful at this time to consider the
cardinality of sets. This will illustrate an important difference be tween
algorithmic functions and general real valued functions. A finite set is
said to have the cardinality of the number of members it has. That is, a
set A has cardinality n if and only if there is a function f: A = {1,...,n}
bijectively. 1In the same way, a set B is said to be countably infinite (or
of the cardinality of the natural numbers) if there is a bijection f: B - N.

(A set is said to be countable if it is finite or countably infinite.) It is a

28

fact, proved by Cantor, that the real numbers have a cardinality larger

than N (Goffman [19531).

Now consider the pairing function <, > considered earlier, <, is
a bijection from NxN into N. The set of pairs of naturalrpumbers comprise
the union over the first component of copies of N. This proves the countable
union of countable sets is countable. Because the number of algorithms
is countable (the Gddel number yields the mapping) and the inputs form a
countable set (using our integer mapping), the set of outputs is a countable
union (over algorithms) of countable sets (over inputs) and is hence countable.
Thus not all real numbers can be computed, in fact, the set of reals which
can be computed form a set of measure zero in the ordinary reals. This will
be meaningful when we consider the place of algorithms in the usual economic
theory. Thus, no real functions can be everywhere computed, and hence the

usual forecast procedures presumed in economic models are not computable.

Proof of the Propogition:

By the existence of a universal function, there is a k so

that

@4 (,0) = ¢3(n).

By the s-m-n theorem, there is a total function g so that
gog(n)(J) = @k(n,J) .

Thus, there is a total function h(n) so that

o O () P n#j
9Qh(n) 3=

"No Attack" n=j

29

By the Recursion Theorem, there is an n* so that

Cox = 4, (n*)

Thus, for j#n¥*,
T

©.(= (q,l(n*) (j) = ¢g(n*) (3 = @k(n*’j) = (Pj(n*)

and for j=n¥,

0 +(3) <Pj(n* = "No Attack'.

This proves the first line of the proposition. The second follows
immediately from the above construction, by patching in a "No Attack"

for input n* to another program as calculated above.

